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Beam Delivery System

• CLIC Design



Overview

• static beam based alignment

- dispersion free steering

- singular values analysis

- response to quadrupole and bpm misalignments, and to corrector strengths

• dynamics effects

(i) introduction

(ii) systematic noise

- pulse-to-pulse motion → give a constraint to the orbit correction gain

- uncorrelated quadrupole jitters → tolerance

(iii) instrumentation noise

- bpm noise on orbit correction → is 100 nm bpm resolution sufficient?

- bpm noise and fast beam-beam feedback

(iv) ATL slow motion:

- orbit correction over a long time scale → how long can we run?

- orbit correction algorithms comparison



Simulation Parameters

• CLIC parameters as defined in May

- bunch charge : 4 · 109 particles

- bunch separation : 0.667 ns

- bunch length : 44 µm

- input vertical emittance : 20 nm

- vertical IP beam size : ≈ 1 nm

- train repetition ratge : 50 Hz

- bds lattice version : L? = 4.3 m

• In the BDS we have..

- 67 quadrupoles

- 67 dipole correctors

- 79 beam position monitors



Static Alignment

Static Alignment Strategy

• turn off the non linear elements

- 1-to-1 correction

- dispersion free steering

• turn on the non linear elements

- 1-to-1 correction

- dispersion free steering



Static Alignment

Dispersion Free Steering in the BDS

- using a test beam with energy E = 98% E0

- alignment in 4 steps...
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Static Alignment

Static Alignment of the BDS

• the system is strongly non-linear

• it is better to align the collimation system and final focus independently

• the final focus is still an open problem...
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⇒ We decided to calculate the response matrix R neglecting the synchrotron radiation emission



Static Alignment

Dispersion Free Steering in the Collimation System

- using one test beam with E = 98%E0

- alignment in 4 steps...
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Static Alignment

Dispersion Free Steering in the Final Focus

- assuming a perfect collimation system and E = 98%E0 for the test beam

- alignment in 4 steps...
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Static Alignment

Emittance Minimization

• Minimization of the final vertical emittance using

- dipole kickers / sextupoles on movers

- the simplex algorithm (brute force approach!)
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⇒ Emittance in fully recovered!



Static Alignment

Emittance Minimization

• Histogram of the final vertical emittance after the optimization, for 100 different random seeds
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Static Alignment

SVD Analysis of R and Weight of Components
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Static Alignment

Diagnostics in the CLIC BDS

• Use of the skew quadrupoles to remove x− y couplings

• Merit function to minimize:

M =
5∑

i=1

(σy,i − σ0 y,i)
2

σ2
0 y,i



Static Alignment

Skew Quadrupoles Optimization

• Beam size at the laserwire as a function of the Quadrupoles roll
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Introduction

Dynamic Effects

• During operation, three dynamic effects affect the machine performances

- pulse-to-pulse: beam trajectory changes

- jitter and shift: of the components

- noise: in the diagnostics

∆Ltotal ≈ ∆Lsystematic + ∆Lresidual + ∆Linstrumentation noise

• Sources of vibration include

- natural seismic motion

- man-made (cultural) noise

⇒ The motion can be divided in three regimes

- high frequency no spatial correlation of the vibration

- lower frequency ground motion well correlated

- slow drifts where the motion is uncorrelated



Dynamic Effects in the Beam Delivery System

Ground Motion Power Spectrum

Power spectral density of ground vibration



Introduction

Ground Motion Vibrations

• It is possible to simulate the ground motion vibration using experimental samples (A,B,C,K)

• but one can consider the two limiting extremes:

1. uncorrelated high-frequency jitter

2. slow drifts of components that can be described with the ATL model

• The ATL relation states that

< ∆y2 > = A · T · L

- the misalignment of two points is proportional to their distance L and elapsed time T

- A is a site/condition/geology specific parameter, typically in the range 0.1 to 100 nm2/m/s

⇒ The T dependence has been confirmed in the minute to month time scale

⇒ High frequency jitter can be used to estimate the motion of the beam centroid (offset), that
will be compensated by beam-beam correction

⇒ ATL-drifts primarily result in increase of the beam emittance, that will be corrected by
component re-alignment



Introduction

Beam-Based Feedback

• tolerances on the alignment of beamline components require continuous beam-based feedback
to counteract performance deterioration

• multi-layered approach on different time scales:

⇒ “slow feedback”

- corrects the beam orbit and compensate for slow ground motion

⇒ inter-pulse feedback

- straightens the train from pulse to pulse. orbit correction

⇒ intra-pulse feedback

- operates at high frequency and acts within a bunch train

- removes the relative offset jitter at the IP by measuring the beam-beam deflection
angle and steering the beams back into collision. offset correction



Dynamic Effects: Systematic Errors

Luminosity Loss due to Pulse-to-Pulse Motion

⇒ lower limit for the slow orbit feedback gain

• ground motion model B (medium noise)

• (ideal implementation of an) orbit correction algorithm

yn+1 = ∆yn + (1− g) yn

- ∆yn ground motion vibration at time step n

- g gain of the orbit feedback

- yn element position at time step n, for each element

• final doublet is stabilized

• beam-beam feedback to correct beam offset at the IP

• Simulation

1. ground motion

2. the orbit feedback runs until stability is reached

3. the beam-beam runs to correct the offset



Systematic Errors

Loss due to Pulse-to-Pulse Motion

- lower limit for the orbit feedback gain
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Instrumentation Noise

Luminosity Loss due to BPM Noise

• we want to study the effect of the instrumentation noise

• perfectly aligned BDS

• realistic orbit correction, using...

- all bpms

- all correctors (svd cut in the singular values)

• bpm noise

- σbpm = 100 nm

⇒ high gains g amplify the
noise
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Instrumentation Noise

Luminosity Loss due to BPM Noise

⇒ to find the upper limit for the gain
• scan of the x and y gains
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Systematic Errors

Quadrupole Jitter Tolerance

• Two cases

1. all quadrupoles jitter

2. final doublet stabilized

• beam-beam feedback is run-
ning

• old parameter set : εy = 10
nm

⇒ stability of 0.5 nm for quadrupoles and 0.1 nm for final doublet quadrupoles



Residual Errors

Luminosity preservation over long time scales

⇒ Shows how long we can run with this feedback loop

• ATL ground motion

• orbit feedback

- all correctors (w/o svd)

- all correctors with bpm and corrector weights

- MICADO: picks out the best correctors

• beam-beam feedback to correct beam offset



Residual Errors

Luminosity preservation over long time scales

• 1-to-1 correction + beam-beam
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Residual Errors

Orbit Correction Convergence

• ATL motion for 1000 seconds
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Orbit Correction

MICADO Patterns

• 16 correctors selected
• histograms for t=1, 10, 100, 1000, 10000 seconds (top to bottom)
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Conclusions

• the tools to perform these integrated simulations have been provided by placet-octave and
guinea-pig

• static alignment

1) collimation system aligned using dispersion free steering

2) final focus still to be aligned

• dynamic alignment

1) it has been proved that

⇒ quadrupole jitter tolerances are relaxed

⇒ 100 nm bpm resolution seem to be sufficient

2) the optimal gains for the orbit correction feedback have been found

0.01 < gx < 0.2

0.01 < gy < 0.3

3) long time scale simulations show that slow orbit correction and fast beam beam allow
to run for ≈ 10000.0 seconds without further corrections


