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Beam Delivery System

e CLIC Design
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Overview

e static beam based alignment

- dispersion free steering
- singular values analysis
- response to quadrupole and bpm misalignments, and to corrector strengths

e dynamics effects

(i) introduction

(i) systematic noise
- pulse-to-pulse motion — give a constraint to the orbit correction gain

- uncorrelated quadrupole jitters — tolerance

(iii) instrumentation noise
- bpm noise on orbit correction — is 100 nm bpm resolution sufficient?

- bpm noise and fast beam-beam feedback

(iv) ATL slow motion:
- orbit correction over a long time scale — how long can we run?

- orbit correction algorithms comparison



Simulation Parameters

e CLIC parameters as defined in May

- bunch charge : 4 - 10? particles
- bunch separation : 0.667 ns

- bunch length : 44 um

- input vertical emittance : 20 nm
- vertical IP beam size : = 1 nm
- train repetition ratge : 50 Hz

- bds lattice version : L* = 4.3 m

e |In the BDS we have..

- 67 quadrupoles
- 67 dipole correctors

- 79 beam position monitors



Static Alignment

Static Alignment Strategy

e turn off the non linear elements

- 1-to-1 correction
- dispersion free steering

e turn on the non linear elements

- 1-to-1 correction

- dispersion free steering



Static Alignment

Dispersion Free Steering in the BDS

- using a test beam with energy £ = 98% Ej

- alignment in 4 steps...
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= the final emittance is enormous



Static Alignment

Static Alignment of the BDS

e the system is strongly non-linear
e it is better to align the collimation system and final focus independently

e the final focus is still an open problem...

3 FFS BPM readings (with and without radiation)
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= We decided to calculate the response matrix R neglecting the synchrotron radiation emission



Static Alignment

Dispersion Free Steering in the Collimation System

- using one test beam with £ = 98%E)

- alignment in 4 steps...

test beam 98% nominal energy, w,/wy=1€5, 0y, ,=0.1 pm, misalignment 10 pm
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= final emittance growth is| Ae = 0.7 nm |




Static Alignment

Dispersion Free Steering in the Final Focus

- assuming a perfect collimation system and £ = 98%FE) for the test beam

- alignment in 4 steps...
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Static Alignment

Emittance Minimization

e Minimization of the final vertical emittance using

- dipole kickers / sextupoles on movers

- the simplex algorithm (brute force approach!)

= Emittance in

100000 ¢

10000 |

&y [nm]

1000 |

100 |

10

| Optimiz'ation —

Nominal
DFS ——

fully recovered!

quadrupole [#]



Static Alignment

Emittance Minimization

e Histogram of the final vertical emittance after the optimization, for 100 different random seeds
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Static Alignment

SVD Analysis of R and Weight of Components
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Static Alignment

Diagnostics in the CLIC BDS

e Use of the skew quadrupoles to remove x — y couplings

600

500 f

12 1 1/2
[m™7]

X,y

200 f

100

N‘-ﬂh‘lﬂ:’rz*—/\"www.

400

300 f

Diagnostics Betatron

Laser\Wires

500

e Merit function to minimize:

Energy "B, ——
collimation
FES -

collimation

1000 1500 2000 2500 3000 3500
Longitudinal location [m]




Static Alignment

Skew Quadrupoles Optimization

e Beam size at the laserwire as a function of the Quadrupoles roll
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Introduction

Dynamic Effects

e During operation, three dynamic effects affect the machine performances
- pulse-to-pulse: beam trajectory changes
- jitter and shift: of the components

- noise: in the diagnostics

AlLgotal = ALgystematic T Alyesidual T A Linstrumentation noise

e Sources of vibration include

- natural seismic motion

- man-made (cultural) noise

= The motion can be divided in three regimes

- high frequency no spatial correlation of the vibration
- lower frequency ground motion well correlated

- slow drifts where the motion is uncorrelated



Dynamic Effects in the Beam Delivery System

Ground Motion Power Spectrum

Power spectral density of ground vibration
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Introduction

Ground Motion Vibrations

e It is possible to simulate the ground motion vibration using experimental samples (A,B,C,K)
e but one can consider the two limiting extremes:
1. uncorrelated high-frequency jitter
2. slow drifts of components that can be described with the ATL model
e The ATL relation states that
<Ay > =A-T - L
- the misalignment of two points is proportional to their distance L and elapsed time T
- Alis a site/condition /geology specific parameter, typically in the range 0.1 to 100 nm?/m /s

= The T dependence has been confirmed in the minute to month time scale

= High frequency jitter can be used to estimate the motion of the beam centroid (offset), that
will be compensated by beam-beam correction

= ATL-drifts primarily result in increase of the beam emittance, that will be corrected by
component re-alignment



Introduction

Beam-Based Feedback

e tolerances on the alignment of beamline components require continuous beam-based feedback
to counteract performance deterioration

e multi-layered approach on different time scales:

= "“slow feedback”

- corrects the beam orbit and compensate for slow ground motion

= inter-pulse feedback

- straightens the train from pulse to pulse. orbit correction

= intra-pulse feedback
- operates at high frequency and acts within a bunch train

- removes the relative offset jitter at the IP by measuring the beam-beam deflection
angle and steering the beams back into collision. offset correction




Dynamic Effects: Systematic Errors

Luminosity Loss due to Pulse-to-Pulse Motion

= lower limit for the slow orbit feedback gain
e ground motion model B (medium noise)
e (ideal implementation of an) orbit correction algorithm
Yn1 = Ayp + (1 = g) yn

- Ay, ground motion vibration at time step n
- g gain of the orbit feedback
- Y, element position at time step n, for each element

e final doublet is stabilized

e beam-beam feedback to correct beam offset at the IP

e Simulation
1. ground motion
2. the orbit feedback runs until stability is reached

3. the beam-beam runs to correct the offset



Systematic Errors

Loss due to Pulse-to-Pulse Motion

- lower limit for the orbit feedback gain
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= AL < 2% for: | g, > 0.01




Instrumentation Noise

Luminosity Loss due to BPM Noise

e we want to study the effect of the instrumentation noise
e perfectly aligned BDS
e realistic orbit correction, using...

- all bpms

- all correctors (svd cut in the singular values)
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Instrumentation Noise

Luminosity Loss due to BPM Noise

= to find the upper limit for the gain
e scan of the x and y gains

= AL < 2% for:




Systematic Errors

Quadrupole Jitter Tolerance

e Two cases
1. all quadrupoles jitter
2. final doublet stabilized

e beam-beam feedback is run-
ning

e old parameter set : ¢, = 10
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Residual Errors

Luminosity preservation over long time scales

=- Shows how long we can run with this feedback loop
e ATL ground motion

e orbit feedback

- all correctors (w/o svd)
- all correctors with bpm and corrector weights
- MICADQO: picks out the best correctors

e beam-beam feedback to correct beam offset



Residual Errors

Luminosity preservation over long time scales

e 1-to-1 correction + beam-beam
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=> the luminosity can be preserved for about 10000 seconds



Residual Errors

Orbit Correction Convergence

e ATL motion for 1000 seconds
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= 1-to-1 correction, with cut in the singular values show good performances

= MICADO, with 24 correctors, does not seem to improve particularly



Orbit Correction

MICADO Patterns

e 16 correctors selected
e histograms for ¢t=1, 10, 100, 1000, 10000 seconds (top to bottom)
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Conclusions

e the tools to perform these integrated simulations have been provided by placet-octave and
guinea-pig

e static alignment
1) collimation system aligned using dispersion free steering
2) final focus still to be aligned

e dynamic alignment

1) it has been proved that
=> quadrupole jitter tolerances are relaxed

=> 100 nm bpm resolution seem to be sufficient

2) the optimal gains for the orbit correction feedback have been found
001 < g, < 0.2
001 < g, < 0.3

3) long time scale simulations show that slow orbit correction and fast beam beam allow
to run for ~ 10000.0 seconds without further corrections



