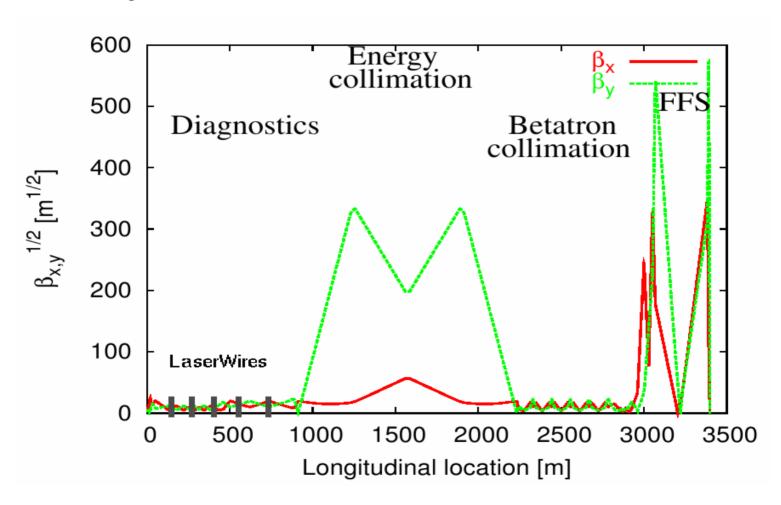


Static and Dynamic Alignment of the CLIC BDS


Andrea Latina, Daniel Schulte, Rogelio Tomas (CERN)

December 11-13, 2007 · SLAC

ILC LET Beam Dynamics Workshop

Beam Delivery System

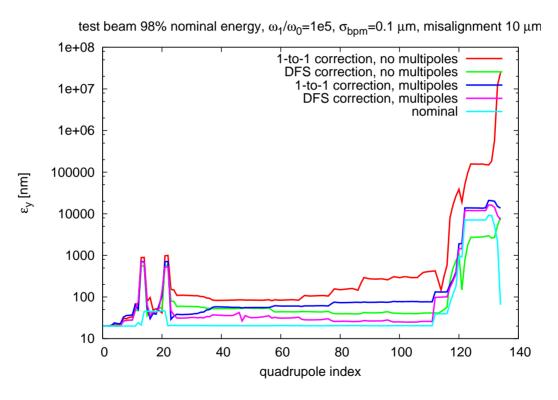
• CLIC Design

Overview

- static beam based alignment
 - dispersion free steering
 - singular values analysis
 - response to quadrupole and bpm misalignments, and to corrector strengths
- dynamics effects
 - (i) introduction
 - (ii) systematic noise
 - pulse-to-pulse motion \rightarrow give a constraint to the orbit correction gain
 - uncorrelated quadrupole jitters → tolerance
 - (iii) instrumentation noise
 - bpm noise on orbit correction \rightarrow is 100 nm bpm resolution sufficient?
 - bpm noise and fast beam-beam feedback
 - (iv) ATL slow motion:
 - orbit correction over a long time scale → how long can we run?
 - orbit correction algorithms comparison

Simulation Parameters

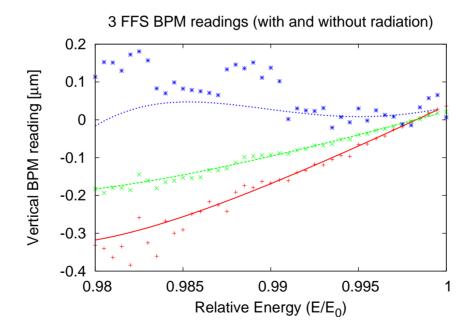
- CLIC parameters as defined in May
 - bunch charge : $4 \cdot 10^9$ particles
 - bunch separation: 0.667 ns
 - bunch length : 44 μ m
 - input vertical emittance : 20 nm
 - vertical IP beam size : ≈ 1 nm
 - train repetition ratge : 50 Hz
 - bds lattice version : $L^{\star} = 4.3 \text{ m}$
- In the BDS we have..
 - 67 quadrupoles
 - 67 dipole correctors
 - 79 beam position monitors


Static Alignment

Static Alignment Strategy

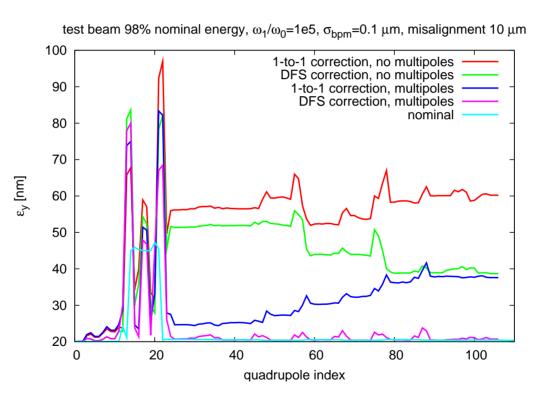
- turn off the non linear elements
 - 1-to-1 correction
 - dispersion free steering
- turn on the non linear elements
 - 1-to-1 correction
 - dispersion free steering

Dispersion Free Steering in the BDS


- using a test beam with energy $E = 98\% E_0$
- alignment in 4 steps...

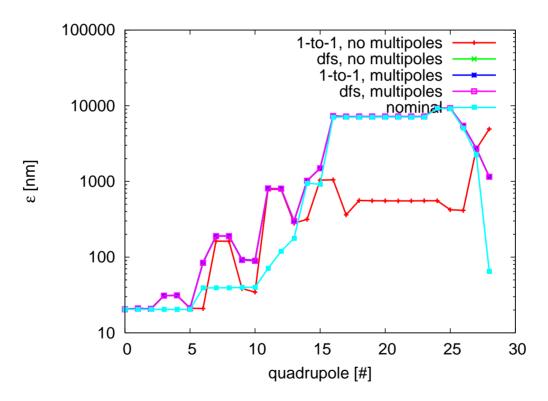
 \Rightarrow the final emittance is enormous

Static Alignment of the BDS


- the system is strongly non-linear
- it is better to align the collimation system and final focus independently
- the final focus is still an open problem...

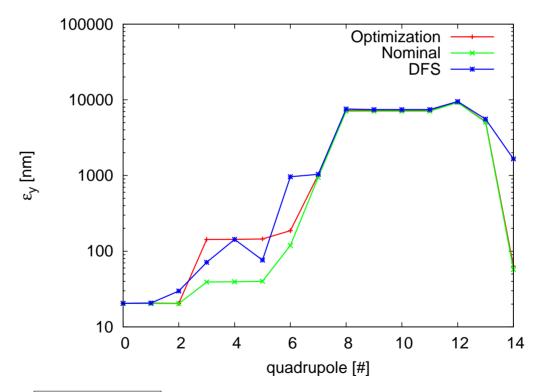
 \Rightarrow We decided to calculate the response matrix R neglecting the synchrotron radiation emission

Dispersion Free Steering in the Collimation System


- using one test beam with $E~=~98\%E_0$
- alignment in 4 steps...

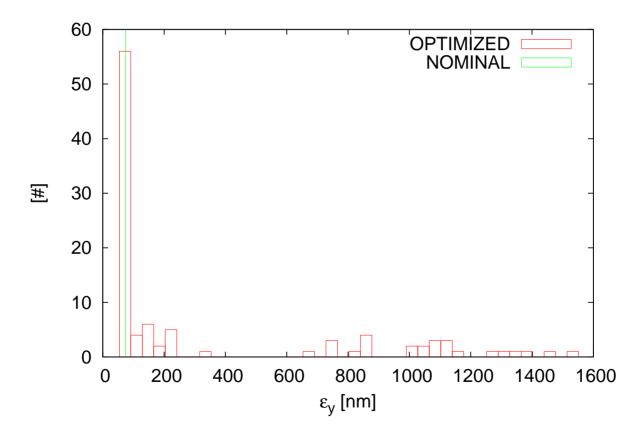
 \Rightarrow final emittance growth is $\Delta \epsilon = 0.7$ nm

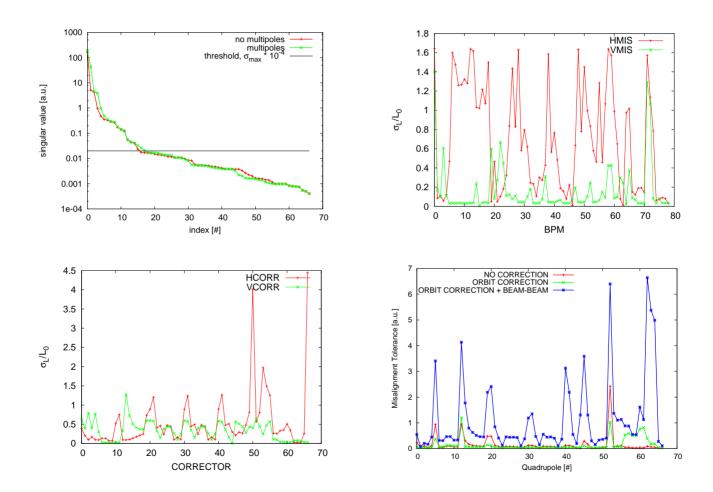
Dispersion Free Steering in the Final Focus


- assuming a perfect collimation system and $E = 98\%E_0$ for the test beam
- alignment in 4 steps...

⇒ DFS in not sufficient...

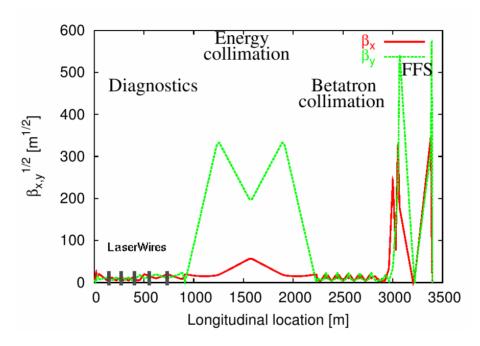
Emittance Minimization


- Minimization of the final vertical emittance using
 - dipole kickers / sextupoles on movers
 - the simplex algorithm (brute force approach!)


 \Rightarrow Emittance in fully recovered!

Emittance Minimization

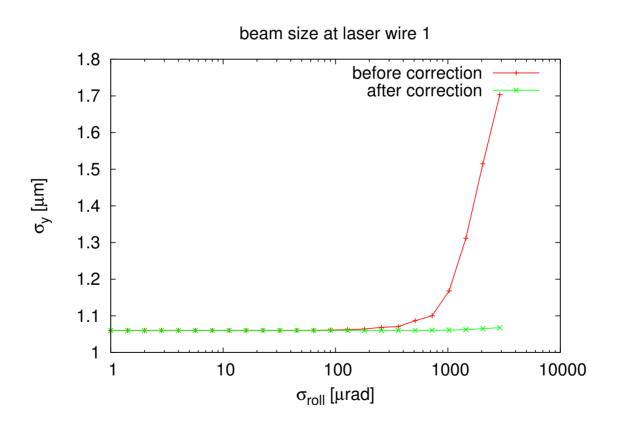
• Histogram of the final vertical emittance after the optimization, for 100 different random seeds



SVD Analysis of **R** and Weight of Components

Diagnostics in the CLIC BDS

ullet Use of the skew quadrupoles to remove x-y couplings



• Merit function to minimize:

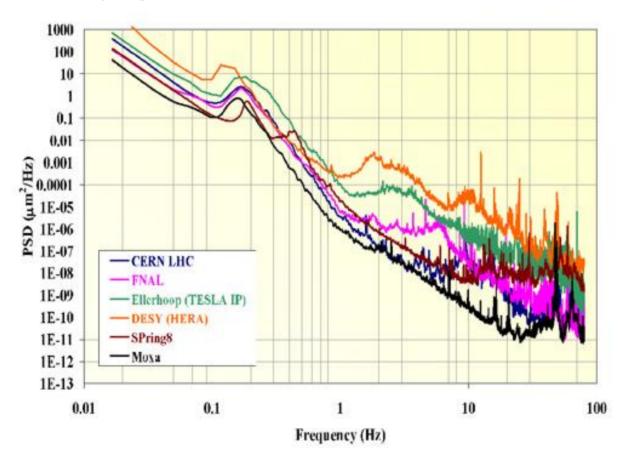
$$M = \sum_{i=1}^{5} \frac{(\sigma_{y,i} - \sigma_{0y,i})^{2}}{\sigma_{0y,i}^{2}}$$

Skew Quadrupoles Optimization

• Beam size at the laserwire as a function of the Quadrupoles roll

Introduction

Dynamic Effects


- During operation, three dynamic effects affect the machine performances
 - pulse-to-pulse: beam trajectory changes
 - jitter and shift: of the components
 - noise: in the diagnostics

$$\Delta L_{
m total} pprox \Delta L_{
m systematic} + \Delta L_{
m residual} + \Delta L_{
m instrumentation noise}$$

- Sources of vibration include
 - natural seismic motion
 - man-made (cultural) noise
- ⇒ The motion can be divided in three regimes
 - high frequency no spatial correlation of the vibration
 - lower frequency ground motion well correlated
 - slow drifts where the motion is uncorrelated

Ground Motion Power Spectrum

Power spectral density of ground vibration

Ground Motion Vibrations

- It is possible to simulate the ground motion vibration using experimental samples (A,B,C,K)
- but one can consider the two limiting extremes:
 - 1. uncorrelated high-frequency jitter
 - 2. slow drifts of components that can be described with the ATL model
- The ATL relation states that

$$<\Delta y^2> = A \cdot T \cdot L$$

- the misalignment of two points is proportional to their distance L and elapsed time T
- A is a site/condition/geology specific parameter, typically in the range 0.1 to 100 nm 2 /m/s
- \Rightarrow The T dependence has been confirmed in the minute to month time scale

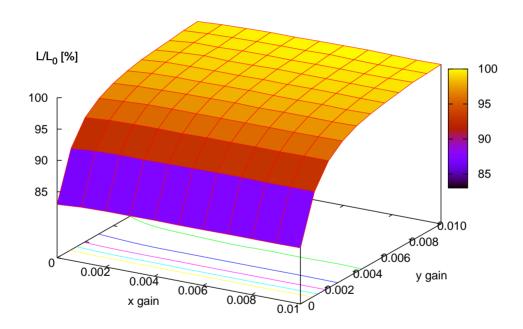
- ⇒ **High frequency** jitter can be used to estimate the motion of the beam centroid (offset), that will be compensated by **beam-beam correction**
- ⇒ ATL-drifts primarily result in increase of the beam emittance, that will be corrected by component re-alignment

Introduction

Beam-Based Feedback

- tolerances on the alignment of beamline components require continuous beam-based feedback to counteract performance deterioration
- multi-layered approach on different time scales:
 - ⇒ "slow feedback"
 - corrects the beam orbit and compensate for slow ground motion
 - ⇒ inter-pulse feedback
 - straightens the train from pulse to pulse. orbit correction
 - ⇒ intra-pulse feedback
 - operates at high frequency and acts within a bunch train
 - removes the relative offset jitter at the IP by measuring the beam-beam deflection angle and steering the beams back into collision. offset correction

Luminosity Loss due to Pulse-to-Pulse Motion

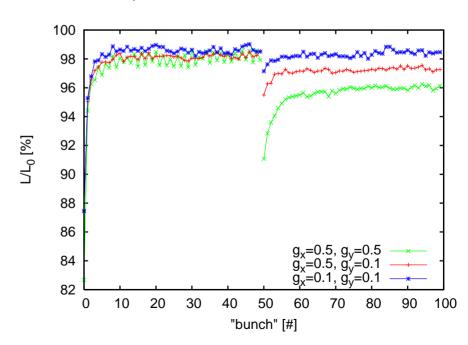

- ⇒ lower limit for the slow orbit feedback gain
 - ground motion model B (medium noise)
 - (ideal implementation of an) orbit correction algorithm

$$y_{n+1} = \Delta y_n + (1-g) y_n$$

- Δy_n ground motion vibration at time step n
- g gain of the orbit feedback
- y_n element position at time step n, for each element
- final doublet is stabilized
- beam-beam feedback to correct beam offset at the IP
- Simulation
 - 1. ground motion
 - 2. the orbit feedback runs until stability is reached
 - 3. the beam-beam runs to correct the offset

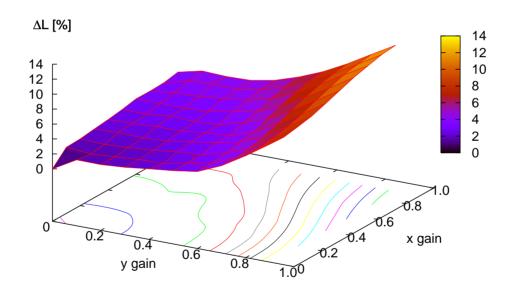
Loss due to Pulse-to-Pulse Motion

- lower limit for the orbit feedback gain



 $\Rightarrow \Delta L < 2\%$ for: $g_y > 0.01$

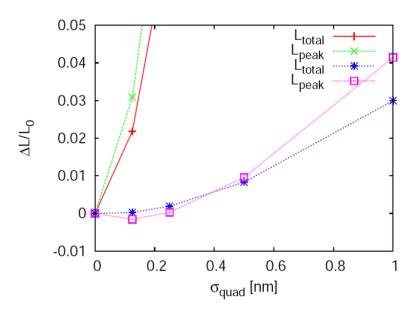
Luminosity Loss due to BPM Noise


- we want to study the effect of the instrumentation noise
- perfectly aligned BDS
- realistic orbit correction, using...
 - all bpms
 - all correctors (svd cut in the singular values)
- bpm noise
 - $\sigma_{\mathsf{bpm}} = 100 \; \mathsf{nm}$

 \Rightarrow high gains g amplify the noise

Luminosity Loss due to BPM Noise

- \Rightarrow to find the upper limit for the gain
- \bullet scan of the x and y gains


$$\Rightarrow \Delta L < 2\%$$
 for:

1.
$$g_x < 0.2$$

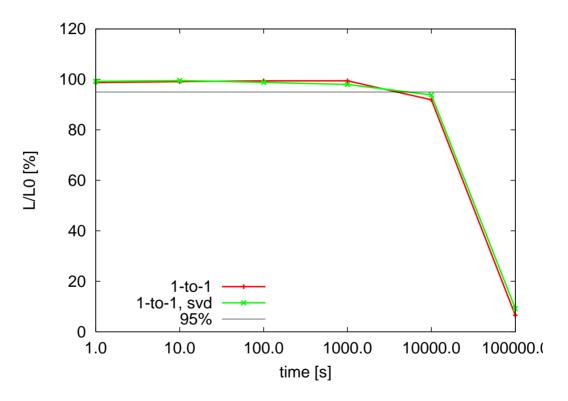
2. $g_y < 0.3$

2.
$$g_y < 0.3$$

Quadrupole Jitter Tolerance

- Two cases
 - 1. all quadrupoles jitter
 - 2. final doublet stabilized
- beam-beam feedback is running
- ullet old parameter set : $\epsilon_y=10$ nm

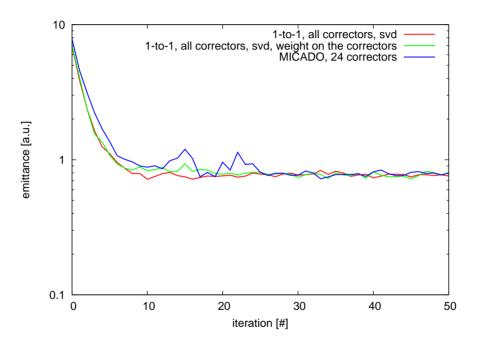
 \Rightarrow stability of 0.5 nm for quadrupoles and 0.1 nm for final doublet quadrupoles


Residual Errors

Luminosity preservation over long time scales

- ⇒ Shows how long we can run with this feedback loop
 - ATL ground motion
 - orbit feedback
 - all correctors (w/o svd)
 - all correctors with bpm and corrector weights
 - MICADO: picks out the best correctors
 - beam-beam feedback to correct beam offset

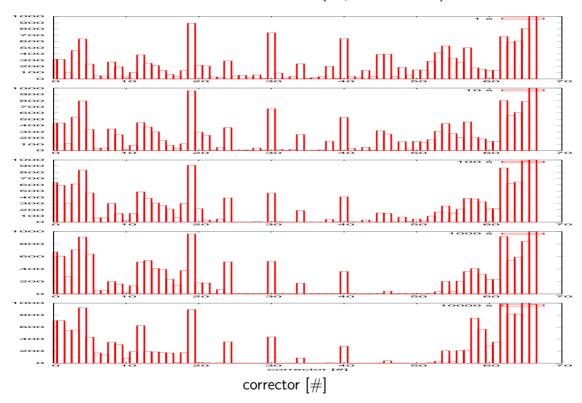
Luminosity preservation over long time scales


• 1-to-1 correction + beam-beam

 \Rightarrow the luminosity can be preserved for about 10000 seconds

Orbit Correction Convergence

• ATL motion for 1000 seconds



- \Rightarrow 1-to-1 correction, with cut in the singular values show good performances
- ⇒ MICADO, with 24 correctors, does not seem to improve particularly

Orbit Correction

MICADO Patterns

- 16 correctors selected
- histograms for t=1, 10, 100, 1000, 10000 seconds (top to bottom)

Conclusions

- the tools to perform these integrated simulations have been provided by placet-octave and guinea-pig
- static alignment
 - 1) collimation system aligned using dispersion free steering
 - 2) final focus still to be aligned
- dynamic alignment
 - 1) it has been proved that
 - ⇒ quadrupole jitter tolerances are relaxed
 - \Rightarrow 100 nm bpm resolution seem to be sufficient
 - 2) the optimal gains for the orbit correction feedback have been found

$$0.01 < q_x < 0.2$$

$$0.01 < g_u < 0.3$$

3) long time scale simulations show that slow orbit correction and fast beam beam allow to run for ≈ 10000.0 seconds without further corrections