DFS simulation in Bunch Compressors of ILC --- following report at DESY GDE Mtg---

K.Kubo (KEK)

2007012 LET Workshop@SLAC

Previous reports

Reported in ILCWS2007 at DESY, May-June 2007.

Andrea Latina also reported his work on DFS in Bunch Compressors in the same workshop

- There are apparent discrepancies.
- This work tried to solve the difference.

New DFS

- Look three orbits instead of two, same as Latina's.
 - i-th BPM reading for nominal setting: z_i0
 - i-th BPM reading for different phase $+\Delta\phi$: $z_i(+)$
 - i-th BPM reading for different phase $\Delta \phi$: $z_i(-)$
 - Using steering magnets, minimize

```
Sum_i \{w^2 (z_i(+) - z_i(-))^2 + z_i0^2 \} w: weight factor
```

- Same phase change for all cavities in BC1 and BC2
- All BPMs and all steering magnets were used.
- Scan $\Delta \phi$ and w and look at final vertical emittance

Errors (RMS)

- Quad and Bend offset: 150 micron
- BPM offset
 - w.r.t. quad: 7 micron, or
 - independently 150 micron
- BPM resolution: 1 micron
- Cavity offset: 300 micron
- Cavity tilt: 150 micro rad. (effectively 300 micro rad.)

NOTE:

- Edge (de)focus cancel approximately a half of the vertical kick due to cavity tilt.
- Edge focus of accelerating cavities are not readily included in the simulation code SAD.
- The effect should be included in SAD, hopefully sometime soon.

Dependence on Weight factor

Emittance (average of 50 seeds) vs. Weight

BPM aligned wrt Quads

BPM aligned Independently

Dependence on phase shift

Average emittancevs. $\Delta \phi$ with the Best Weight

From Andrea Latina, 2007 International Linear Collider Workshop

ILC BC Alignment: BPM_{res}=1μm, 50 machines

SUMMARY

- The results are much better than expected from the previous report.
- Choice of Weight factor was the most important for the difference
 - In previous report:

```
w=(BPM misalignment)/(sqrt(2)*BPM resolution) which is about 100. (misalignment 150 um and resolution 1 um) This is far from the optimum.
```

- It is not clear why w should be so small.
 - Maybe nonlinearity is still significant even if using $+-\Delta\phi$.
- The expected emittance is not satisfactory.
 - Probably bump tuning will effective.