

Main Linac Simulations

Andrea Latina, Daniel Schulte · CERN Peder Eliasson · CERN, Uppsala University

December 11-13, 2007 · SLAC

ILC LET Beam Dynamics Workshop

Overview

• Bunch Compressor

• Main Linac

- \Rightarrow Static alignment strategies for a laser-straight and a curved layout
 - use of BC to align the $\ensuremath{\mathsf{ML}}$
 - weight scan for DFS with two test beams
 - emittance tuning bumps
 - impact of BPM calibration errors
- \Rightarrow Dynamic effects
 - quadrupole jitter during alignment
 - ripples of the RF gradient
 - luminosity loss due to quadrupole jitter
 - MICADO in the main linac

Main Linac Simulations

• Simulation Setup

- All simulations made using PLACET
- XSIF ILC2006e version of the lattice

	quadrupole position	300 μ m
	quadrupole tilt	300 μ rad
	quadrupole roll	300 μ rad
1	cavity position	300 μ m
	cavity tilt	300 μ rad
	bpm position	300 μ m

- Standard ILC misalignments:

- BPM resolution = $1\mu {\rm m}$
- Curved layout obtained introducing small angles between the cryo-modules (KICKs)

• Alignment Procedure

- 1-to-1 correction
- dispersion free steering
- emittance tuining bumps (dispersion / wakefields bumps)

All results are the average of 100 seeds

Bunch Compression for Dispersion Free Steering (1/3)

• ILC BC is composed of two accelerating stages and two magnetic chicanes

• in order to generate the energy difference for the DFS test beams, we introduce a *phase delay* in the BC's RF structure

 \Rightarrow the nominal beam is not accelerated. whereas the test beams, whose relative phase is $\pm\Delta\phi$, get an acceleration

Bunch Compression for Dispersion Free Steering (2/3)

• ILC BC is composed of two accelerating stages and two magnetic chicanes

• in order to generate the energy difference for the DFS test beams, we introduce a *phase delay* in the BC's RF structure

 \Rightarrow the nominal beam is not accelerated. whereas the test beams, whose relative phase is $\pm\Delta\phi$, get an acceleration

Bunch Compression for Dispersion Free Steering (3/3)

• ILC BC is composed of two accelerating stages and two magnetic chicanes

• in order to generate the energy difference for the DFS test beams, we introduce a *phase delay* in the BC's RF structure

 \Rightarrow the nominal beam is not accelerated. whereas the test beams, whose relative phase is $\pm\Delta\phi$, get an acceleration

Static Alignment Bunch Compressor for Main Linac Alignment

- Compression of off-phase beams
 - \Rightarrow they get different energy with respect to the nominal one and can be used for DFS in the Main Linac

- the longitudinal phase space changes
- \Rightarrow their phase must be synchronized with the ML accelerating phase

Static Alignment

Final Emittance Growth as a function of Φ and ω

• Emittance growth after DFS:

- \bullet left hand plot : ω_1 =1000, scan of the phase offset
- right hand plot : $\Phi=25^{\circ}$, scan of the weight
- each point is the average of 100 machines
- \Rightarrow emittance growth is recovered.

Static Alignment Test Beams for DFS

- We use two test beams:
 - 1. creating an initial energy difference before the man linac (using the BC)
 - 2. reducing the gradient of the main linac accelerating structures
 - \Rightarrow we need both.
- DFS formula:

$$\chi^2 = \sum_{i=1}^n \omega_{1,i} y_{0,i}^2 + \sum_{j=1}^m \sum_{i=1}^n \omega_{2,j} (y_{j,i} - y_{0,i})^2 + \sum_{k=1}^p \omega_{3,k} c_k^2$$

we have three contributions:

- 1. nominal beam steered to the nominal trajectory
- 2. test beams steered to the nominal beams
- 3. balancing term

Static Alignment DFS with Two Test Beams

Emittance growth as a function of the weights after DFS, using two test beams :

1)
$$\Delta E=0.2 \rightarrow E_{\text{initial}} = 80\% E_{0,\text{initial}}$$

2) $\Delta g=0.2 \rightarrow E_{\text{final}} = 80\% E_{0,\text{final}}$

Static Alignment DFS with Two Test Beams + Emittance Bumps

Emittance growth as a function of the weights after dispersion bumps :

1)
$$\Delta E=0.2 \rightarrow E_{\text{initial}} = 80\% E_{0,\text{initial}}$$

2) $\Delta g=0.2 \rightarrow E_{\text{final}} = 80\% E_{0,\text{final}}$

 \Rightarrow Residual emittance growth after the correction procedure is $\Delta \epsilon = 2.85$ nm

Static Alignment DFS with Two Test Beams + Emittance Bumps

Emittance growth as a function of the weights after dispersion bumps and wakefields bumps:

1)
$$\Delta E=0.2 \rightarrow E_{\text{initial}} = 80\% E_{0,\text{initial}}$$

2) $\Delta g=0.2 \rightarrow E_{\text{final}} = 80\% E_{0,\text{final}}$

 $\Delta \epsilon_y$ [nm]

 \Rightarrow Residual emittance growth after the correction procedure is $\Delta \epsilon = 1.7$ nm (quadrupole roll is not corrected)

Static Alignment Emittance Growth Histogram

- Emittance growth within 90% confidence limit

Static Alignment Selection of Optimal Correctors

- If all quadrupoles are used to construct knobs the tuning gets sensitive to the mover step size.
- \Rightarrow We must choose the "optimal" correctors (P.Eliasson)

Static Alignment Tuning Bumps in the ILC Linac

Beam portrait in the z - y plane, the color corresponds to the energy

- top: beam after 1-to-1 correction
- middle: beam after DFS
- bottom: beam after emittance tuning bumps

Static Alignment Linac that Follows the Earth's Curvature

• Laser-Straight vs. Curved Layout

- Dispersion Free Steering

- Target Dispersion Steering

- main linac lattice is the same in case of a laser straight or a curved linac
- cryogenic modules are straight and a small angle is introduced between each pair of modules to follow the earth curvature

Static Alignment BPM Calibration Error

• Let's recall the DFS formula

$$M = \sum_{i=1}^{n} \omega_0 y_{0,i}^2 + \sum_{j=1}^{m} \sum_{i=1}^{n} \omega_j (y_{j,i} - y_{0,i} - \Delta_i)^2$$

- ⇒ Erroneous **BPM calibrations** can cause error in evaluating the dispersion, biasing the "target dispersion" steering
 - In our model, the BPM readings are linear to the actual measurements but there is a scale factor a_i

- in the simulations scale factors have a Gaussian distribution with width σ_a around 1

 \Rightarrow The estimated error in measuring the dispersion, compared to the BPM resolution, is

$$\sigma_D^2 = \sigma_a^2 D^2 + \sigma_{\rm res}^2 \left(E/\Delta E \right)^2$$

at a given BPM

Static Alignment BPM Calibration Error

• Emittance growth as a function of the weight ω_1 ($\omega_0 = 1$) for different calibration errors σ_a

$$X_{\text{meas}} = (1 - a) X_{\text{rea}}$$

• We used one test beam with an energy 20% below the nominal energy

 \Rightarrow For large scale errors, the curvature does not allow to use large values of ω_1 and thus one does not take full advantage of the good BPM resolution

Static Alignment BPM Calibration Error and Tuning Bumps

- Emittance tuning bumps can significantly reduce the emittance growthhey are likely required already in the laser-straight linac
- We investigated the impact of one dispersion bump before and one after the main linac

 \Rightarrow With zero BPM calibration error the performances are almost identical to those for the laserstraight machine.

Dynamic Effects

Emittance Growth due to Quadrupole Jitter

- We expect that the largest impact of dynamics imperfections to arise during DFS
- In this simulation we:
 - used one single test beam
 - assumed that the first three FODO cells were aligned
 - used Dispersion Free Steering
 - 1 test beam, gradient 90%
 - 40 quadrupoles per correction bin, with an overlap of 20
 - each pulse simulated in full detail
- Quadrupole jitter : 500 nm \Rightarrow emittance growth $\delta \epsilon_y =$ 6 nm

- no jitter = static machine (quadrupole roll gives the largest emittance growth 3 nm not critical)
- single pulse = gradient changed withing the pulse

Dynamic Effects

Emittance Growth due to RF Gradient Jitter

- We studied the impact of gradient jitter during the acceleration
- We used a -very large- gradient jitter of 5% RMS:
 - for each set of 24 cavities powered by the same klystron
 - gradient error is applied for each beam independently
- Dispersion Free Steering, using the same settings as before
- Additional emittance growth $\delta \epsilon_y = 3 \text{ nm}$

- no jitter = static machine

- low = 1.5 % RMS gradient jitter

- \Rightarrow With 1.5 % RMS jitter, the final emittance growth is $\delta\epsilon_y=$ 0.2 nm
- \Rightarrow the effect is not negligible, but still acceptable

Dynamic Effects Beam-Based Orbit Correction

- Dynamic imperfections, such as ground motion or vibrations, are cured using BB feedback
- We compare two algorithms for the **orbit correction**:
 - 1-to-1 correction : all correctors and all bpms are used
 - MICADO : a selected number of correctors and bpms is used

Dynamic Effects

Luminosity Loss Due to Quadrupole Jitter

- we used GUINEA-PIG to calculate the luminosity
- a perfect machine has been used in the simulation
- and the end of the linac an **intra-pulse feedback** has been used to remove incoming beam position and angle errors at a single point
- quadrupoles in the electron linac have been scattered, while the ones in the positron linac are kept fixed
- the beam delivery system is represented by a **transfer matrix**: the end-of-linac Twiss parameters are transformed into the ones at the IP

Conclusions

- PLACET simulations of the ILC main linac have been carried out
- Static Alignment of the LINAC has been performed using beam-based alignment techniques
 - Dispersion Free Steering using the bunch compressor 2 to generate the test beams seems effective both for a curved and laser-straight machine
 - The use of dispersion tuning bumps and wakefields bumps is recommended to achieve the emittance growth goal $< 5~\rm{nm}$
 - An optimized set of tuining bumps has been derived using an SVD analysis of the solution space
- Dynamic Effects in the Main Linac have been considered
 - MICADO and 1-to-1 orbit correction algorithms have been compared
 - emittance growth due to quadrupole jitter during the alignment
 - emittance growth due to RF gradient jitter during the alignment
 - luminosity loss due to quadrupole jitter with and without beam-beam feedback correction

Bunch Compressor Alignment

Bunch Compressor 1 used to align Bunch Compressor 2

- Alignment Strategy
 - 1-to-1 correction
 - dispersion free steering using two test beams, $\pm\Delta\phi$
 - dispersion bumps optimization using the skew quadrupoles in BC2
- A perfectly aligned BC1 is used to generate the test beams for DFS in BC2
 - an offset of few degrees in the RF phase of the BC1 accelerating structures, leads to an energy difference at the entrance of BC2
 - bunch energy as a function of the RF phase offset

$$\begin{array}{rcl} \Delta \phi = +2^{o} & \Rightarrow & 99.59\% \ E_{0}; \ \Delta \phi = -2^{o} & \Rightarrow & 100.41\% \ E_{0} \\ \Delta \phi = +5^{o} & \Rightarrow & 98.98\% \ E_{0}; \ \Delta \phi = -5^{o} & \Rightarrow & 101.04\% \ E_{0} \\ \Delta \phi = +10^{o} & \Rightarrow & 98.01\% \ E_{0}; \ \Delta \phi = -10^{o} & \Rightarrow & 102.11\% \ E_{0} \end{array}$$

 $\Rightarrow \phi_0 ~=~ 110 ~{\rm deg}$

 $\Rightarrow \mathsf{E}_0 \simeq 4.79 \; \mathsf{GeV}$

Bunch Compressor Alignment

Case 2: alignment of BC1 and BC2 at once

- the BC is aligned at once : the phase offset is applied to **all** cavities
 - ...using DFS and SKEW quad optimization
 - the RF phase of all accelerating structures is offset by few degrees
 - \Rightarrow thus the bunches gain different acceleration \Rightarrow this can be exploited by DFS
 - \Rightarrow the energy difference grows along the BC (efficacy of DFS grows along the lattice)
 - all 4 pairs of SKEW quadrupoles are used for dispersion reduction

- Results:
 - \Rightarrow Final emittance growth after DFS and SKEW quad optimization

$$\Delta \phi = \pm 2^{o} \Rightarrow 3.12 \text{ nm}$$

 $\Delta \phi = \pm 5^{o} \Rightarrow 2.79 \text{ nm}$
 $\Delta \phi = \pm 10^{o} \Rightarrow 2.68 \text{ nm}$

 \Rightarrow A study of each single source of misalignment was performed

All results are the average of 50 machines

ILC BC Alignment: $BPM_{res}=1\mu m$, 50 machines

Δε [nm]

Δε [nm]