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Overview

e Bunch Compressor

e Main Linac

= Static alignment strategies for a laser-straight and a curved layout
use of BC to align the ML

weight scan for DFS with two test beams

emittance tuning bumps

impact of BPM calibration errors

= Dynamic effects

- quadrupole jitter during alignment

- ripples of the RF gradient

- luminosity loss due to quadrupole jitter
- MICADO in the main linac



Main Linac Simulations

e Simulation Setup

- All simulations made using PLACET
- XSIF ILC2006¢e version of the lattice

quadrupole position 300 pm
quadrupole tilt 300 prad
- Standard ILC misalignments: qua_drupol.e.roll 300 prad
cavity position 300 pm
cavity tilt 300 prad
bpm position 300 pm

- BPM resolution = 1um

- Curved layout obtained introducing small angles between the cryo-modules (KICKs)

e Alignment Procedure

- 1-to-1 correction
- dispersion free steering

- emittance tuining bumps (dispersion / wakefields bumps)

All results are the average of 100 seeds



Introduction

Bunch Compression for Dispersion Free Steering (1/3)

e |LC BC is composed of two accelerating stages and two magnetic chicanes

Chicane Chicane

BC1 (~5 GeV) BC2 (5 —> 15 GeV)

e in order to generate the energy difference for the DFS test beams, we introduce a phase delay
in the BC's RF structure
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= the nominal beam is not accelerated. whereas the test beams, whose relative phase is =A¢, get an acceleration



Introduction

Bunch Compression for Dispersion Free Steering (2/3)

e |LC BC is composed of two accelerating stages and two magnetic chicanes

Chicane

Chicane

BC1 (~5 GeV)

e in order to generate the energy difference for the DFS test beams, we introduce a phase delay

in the BC's RF structure

= the nominal beam is not accelerated. whereas the test beams, whose relative phase is =A¢, get an acceleration

BC2 (5 —> 15 GeV)
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Introduction

Bunch Compression for Dispersion Free Steering (3/3)

e |LC BC is composed of two accelerating stages and two magnetic chicanes

Chicane

Chicane

BC1 (~5 GeV)

e in order to generate the energy difference for the DFS test beams, we introduce a phase delay

in the BC's RF structure

= the nominal beam is not accelerated. whereas the test beams, whose relative phase is =A¢, get an acceleration

BC2 (5 —> 15 GeV)
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Static Alignment

Bunch Compressor for Main Linac Alignment

e Compression of off-phase beams

= they get different energy with respect to the nominal one and can be used for DFS in the

Main Linac
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e the longitudinal phase space changes

= their phase must be synchronized with the ML accelerating phase



Static Alignment

Final Emittance Growth as a function of ® and w

e Emittance growth after DFS:
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e left hand plot : w; =1000, scan of the phase offset
e right hand plot : ®=25°, scan of the weight

- each point is the average of 100 machines

= emittance growth is recovered.



Static Alignment

Test Beams for DFS

e \We use two test beams:

1. creating an initial energy difference before the man linac (using the BC)

2. reducing the gradient of the main linac accelerating structures

= we need both.

e DFS formula:
9 n 9 m n 9 p 9
X = 21 w1, Yo T '21 21 wa i (Yji — Youi)” + kzl w3k C,

we have three contributions:

E [GeV]
) . : 500
1. nominal beam steered to the nominal trajectory
2. test beams steered to the nominal beams
3. balancing term nominal beam
_ beam E>EO (BC)
9 beam E<EO (Gradient)
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Static Alignment

DFS with Two Test Beams

Emittance growth as a function of the weights after DFS, using two test beams :

1) AE=0.2 — Einitiat = 80% Eo jnitial
2) Ag:oz - Efinal = 80% EO,finaI
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= Optimum: |wa £=12800, wag=200




Static Alignment

DFS with Two Test Beams + Emittance Bumps

Emittance growth as a function of the weights after dispersion bumps :

1) AE=0.2 — FEiitial = 80% Ep jnitial
2) Ag=0.2 — Efinal = 80% Ep final
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= Residual emittance growth after the correction procedure is| Ae = 2.85 nm |




Static Alignment

DFS with Two Test Beams + Emittance Bumps

Emittance growth as a function of the weights after dispersion bumps and wakefields bumps:

1) AE=0.2 — FEiitial = 80% Ep jnitial
2) Ag=0.2 — Efinal = 80% Ep final
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= Residual emittance growth after the correction procedure is| Ae = 1.7 nm |

(quadrupole roll is not corrected)



Static Alignment

Emittance Growth Histogram

- Emittance growth within 90% confidence limit
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Static Alignment

Selection of Optimal Correctors

e If all quadrupoles are used to construct knobs the tuning gets sensitive to the mover step size.

= We must choose the “optimal” correctors (P.Eliasson)
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Static Alignment

Tuning Bumps in the ILC Linac

Beam portrait in the z — y plane, the color

- top: beam after 1-to-1 correc-
tion

- middle: beam after DFS

- bottom: beam after emit-
tance tuning bumps
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Static Alignment

Linac that Follows the Earth’s Curvature

e Laser-Straight vs. Curved Layout

- Dispersion Free Steering

- Target Dispersion Steering

e main linac lattice is the same in case of a laser straight or a curved linac

e cryogenic modules are straight and a small angle is introduced between each pair of modules
to follow the earth curvature



Static Alignment

BPM Calibration Error

e Let's recall the DFS formula
n m n
2
M=% wys,+> > w (Yji—yoi—A)
j=1 i=1

=1

= Erroneous BPM calibrations can cause error in evaluating the dispersion, biasing the “target
dispersion” steering

e In our model, the BPM readings are linear to the actual measurements but there is a scale
factor a;

L'j reading — Aj L

bpmreading

- in the simulations scale factors have a Gaussian distribution with width o, around 1

= The estimated error in measuring the dispersion, compared to the BPM resolution, is

0% =02 D*+ o’ (E/AE)

res

at a given BPM



Static Alignment

BPM Calibration Error

e Emittance growth as a function of the weight wy (wy = 1) for different calibration errors o,

Xmeas —

(1 - a) Xreal

e We used one test beam with an energy 20% below the nominal energy
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= For large scale errors, the curvature does not allow to use large values of w; and thus one
does not take full advantage of the good BPM resolution



Static Alignment

BPM Calibration Error and Tuning Bumps

e Emittance tuning bumps can significantly reduce the emittance growthhey are likely required

already in the laser-straight linac

e We investigated the impact of one dispersion bump before and one after the main linac
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= With zero BPM calibration error the performances are almost identical to those for the laser-

straight machine.



Dynamic Effects

Emittance Growth due to Quadrupole Jitter

e We expect that the largest impact of dynamics imperfections to arise during DFS
e In this simulation we:

- used one single test beam

- assumed that the first three FODO cells were aligned

- used Dispersion Free Steering
- 1 test beam, gradient 90%
- 40 quadrupoles per correction bin, with an overlap of 20

- each pulse simulated in full detail

e Quadrupole jitter : 500 nm = emittance growth | de, = 6 nm
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Dynamic Effects

Emittance Growth due to RF Gradient Jitter

e We studied the impact of gradient jitter during the acceleration
e We used a -very large- gradient jitter of 5% RMS:

- for each set of 24 cavities powered by the same klystron

- gradient error is applied for each beam independently

e Dispersion Free Steering, using the same settings as before

e Additional emittance growth | ¢, = 3 nm
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= With 1.5 % RMS jitter, the final emittance growth is de, = 0.2 nm

= the effect is not negligible, but still acceptable



Dynamic Effects

Beam-Based Orbit Correction

e Dynamic imperfections, such as ground motion or vibrations, are cured using BB feedback
e We compare two algorithms for the orbit correction:

- 1-to-1 correction : all correctors and all bpms are used

- MICADO : a selected number of correctors and bpms is used
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Dynamic Effects

Luminosity Loss Due to Quadrupole Jitter

- we used GUINEA-PIG to calculate the luminosity
- a perfect machine has been used in the simulation

- and the end of the linac an intra-pulse feedback has been used to remove incoming beam
position and angle errors at a single point

- quadrupoles in the electron linac have been scattered, while the ones in the positron linac are
kept fixed

- the beam delivery system is represented by a transfer matrix: the end-of-linac Twiss param-
eters are transformed into the ones at the IP
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Conclusions

e PLACET simulations of the ILC main linac have been carried out

e Static Alignment of the LINAC has been performed using beam-based alignment techniques

- Dispersion Free Steering using the bunch compressor 2 to generate the test beams seems
effective both for a curved and laser-straight machine

- The use of dispersion tuning bumps and wakefields bumps is recommended to achieve the
emittance growth goal < 5 nm

- An optimized set of tuining bumps has been derived using an SVD analysis of the solution
space

e Dynamic Effects in the Main Linac have been considered
- MICADO and 1-to-1 orbit correction algorithms have been compared
- emittance growth due to quadrupole jitter during the alignment
- emittance growth due to RF gradient jitter during the alignment

- luminosity loss due to quadrupole jitter with and without beam-beam feedback correction



Bunch Compressor Alignment

Bunch Compressor 1 used to align Bunch Compressor 2

e Alignment Strategy
- 1-to-1 correction
- dispersion free steering using two test beams, =A@
- dispersion bumps optimization using the skew quadrupoles in BC2
e A perfectly aligned BC1 is used to generate the test beams for DFS in BC2

- an offset of few degrees in the RF phase of the BC1 accelerating structures, leads to an
energy difference at the entrance of BC2

- bunch energy as a function of the RF phase offset

Ap =420 = 9959% Ey; Ap=—-20 = 100.41% E,
Ap =45 = 08.98% Ey; Adp=—5 = 101.04% E,
Ap=-+10° = 98.01% Ey; Adp=—10° = 102.11% E,

= ¢9 = 110 deg



ILC BC2 Alignment Using the SKEW Quads: BPM,,,=1um, 50 machines
1000 ¢

q) (0]
+SKEW, A9=10
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Ap=42° = 3.7nm
= Final emittance growth after DFS and SKEW quad optimization A¢ = +£5° = 2.0 nm
A¢p ==+10° = 1.5nm



Bunch Compressor Alignment

Case 2: alignment of BC1 and BC2 at once

e the BC is aligned at once : the phase offset is applied to all cavities

...using DFS and SKEW quad optimization

- the RF phase of all accelerating structures is offset by few degrees
= thus the bunches gain different acceleration = this can be exploited by DFS
= the energy difference grows along the BC (efficacy of DFS grows along the lattice)

- all 4 pairs of SKEW quadrupoles are used for dispersion reduction

e Results:

= Final emittance growth after DFS and SKEW quad optimization

Ap==12° = 3.12nm
Ap =45 = 279 nm
A¢p =+£10° = 2.68 nm

= A study of each single source of misalignment was performed

All results are the average of 50 machines
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ILC BC Alignment: BPM,c=1um, 50 machines
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Ae [nm]

ILC BC Alignment: A¢=2°, 50 machines
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