## WakeFest Summary 2

ILC Wakefest Workshop, Dec 11-13, 2007

## **Subject Areas**

- Wakefield with cavity imperfection
- Beamline HOM absorber
- Large system simulation
- Multipacting simulation

A total of 9 talks

## Modeling Imperfection Effects on Dipole Modes in TESLA Cavity

## Liling Xiao

## Advanced Computations Department, SLAC



### **1. TESLA Cavity Dipole Mode Measurement Data**

TTF module 5: 1st/2nd dipole band



F (MHz)

Dipole mode frequencies shift and Qext scatter





Distorted mesh for the cavity imperfection model



#### Example 2: Cell shape elliptical deformed (dr=0.25mm)

#### - cause mode polarization change and mode splitting



TDR cavity with elliptical cell shape

ideal cavity

## **Beamline HOM Absorber**

Talks:

- Beamline HOM Absorber Oleg Nezhevenko, FNAL
- Beamline HOM absorber simulation using T3P – Liling Xiao, SLAC

Beam spectrum: 3.2 nC, 
$$\sigma_z = 0.300 \text{ mm}$$
,  $\Delta f_{i,i+1} = 2.967 \text{ MHz}$ 



**Beam Line Absorber** 

TL

T.Higo, et al, IId ILC Workshop

#### Absorption efficiency estimations.



Simple model of HOM absorber: the ring has the length of 50mm, internal diameter of 90 mm, and the thickness of 10mm (DESY style).



## **RF Unit Test Facility**



*O.N.* 

• Simulation Results

1) 3D single cavity with beamline absorber ( $\underline{\epsilon_r}$ =15,  $\sigma_{eff}$ =0.6s/m)

A Gaussian bunch with  $\sigma z = 10mm$ , Q = 3.2nc on axis.



3.5million mesh elements, 2<sup>nd</sup> basis function run on Franklin at Nersc.

512 processors 24000 time steps within 12 hours



Monopole Single Passage Losses

| <b>One bunch Q=3.2nc, bunch length=10mm</b><br>Loss factor (V/pc)=3.566V/pc | Lossy dielectric conductivity $\sigma_{eff}$ =0.6(s/m)<br>Dielectric constant $\epsilon_r$ =15, Within 45ns |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Total Energy Generated by Beam (J)                                          | 3.65e-5                                                                                                     |
| Energy stored in cavity (J)                                                 | 3.25e-5 (FM mode energy=2.06e-5J)                                                                           |
| Energy leaked out HOM coupler ports (J)                                     | 4.05e-7                                                                                                     |
| Energy propagated into beam pipe (J)                                        | 2.11e-6                                                                                                     |
| Energy dissipated in the absorber (J)                                       | 2.4e-6                                                                                                      |
| Energy loss on the copper absorber beampipe wall (J)                        | 6.6e-10 (cold copper conductivity=350ms/m)                                                                  |

2-cavity with one beamline absorber



## Large System Simulation

Talks:

- Multi-cavity trapped mode simulation Cho Ng, SLAC
- Globalised scattering matrix simulation in ILC cavities and modules – Ian Shinton, Manchester University
- Large scale 3D wakefield simulations with PBCI – Sascha Schnepp, T.U. Darmstadt

## 3<sup>rd</sup> Dipole-Band Trapped Modes in Cryomodule

## Cryomodule 3<sup>rd</sup> Dipole-Band Mode - Q<sub>ext</sub> and Kick



- Modes above cutoff frequency are coupled throughout 8 cavities
- Modes are generally x/y-tilted & twisted due to 3D end-group geometry
- Both tilted and twisted modes cause x-y coupling

## Trapped Mode using Omega3P

#### **Electric field**



#### Trapped mode

- TM-like mode localized in beampipe between 2 cavities
- Frequency = 2.948 GHz, slightly higher than TM cutoff at 2.943 GHz
- R/Q = 0.392 Ω; Q = 6320
- Mode power = 0.6 mW (averaged)



#### Cascaded scattering matrix S21 of mode 1 as a function of mode 1 (TE11) in a complete Tesla Module



## Obtaining useful electromagnetic fields, kicks, R/Q's and wakefields from a cascading simulation

- > By itself the GSM does not tell us a great deal
- The derivation of the electromagnetic fields from the GSM is what is required for useful design information: kicks, R/Q's, Wakefields etc.....
- There are a number of possibilities that could be used to calculate the electromagnetic field from the GSM:
- Mode matching computationally inexpensive; however care with the physics must be used.
- Use the GSM as boundary conditions in a reworked driven modal solution – note this method would be computationally very expensive and time consuming.

I. Shinton Wakefest07 12/12/07

# A quick look at the normalised fields at the junctions across all frequencies



I. Shinton Wakefest07 12/12/07

## Introduction

#### There is an actual demand for:

1. Wake field simulations in arbitrary 3D-geometry

#### 3D-codes

2. Accurate numerical solutions for high frequency fields

(quasi-) dispersionless codes

- 3. Utilizing large computational resources for ultra-short bunches parallelized codes
- 4. Specialized algorithms for long accelerator structures *moving window codes*

## ILC-ESA collimator



## TESLA / HOM coupler

#### **TESLA 9-cell cavity**



## **Multipacting Simulation**

Talks:

- Multipacting simulation for the SNS cavity using Analyst – I. Gonin, FNAL
- Multipacting simulation using parallel code Track3P – Lixin Ge, SLAC
- TTF-III coupler processing and multipacting simulation using MAGIC Faya Wang, SLAC

*I.G & L.G.* 

#### **MP IN SNS CAVITY**





#### Models simulated using Analyst and Track3P are different!

## MP in ILC HOM coupler: notch gap *I.G.*



Good correlation between 1D, 3D&measurements



Delta as a function of RF input power and Multipacting order



#### **TTF-III** coupler processing



Strong MP around 300kW!

#### *F.W.*

