
PLACET: New Features and Plans

Andrea Latina, Daniel Schulte (CERN)

...and the CERN CLIC Beam Dynamics Group

December 11-13, 2007 · SLAC

ILC LET Beam Dynamics Workshop

Introduction

Placet Tracking Code

• it is a tracking code that simulates beam transport and orbit correction in

linear colliders, developed by Daniel Schulte

• it is a real tracking code and implements several collective effects -relevant for a

LC-

• it implements orbit correction algorithms and feedback loops

• it cannot simulate rings (not yet!)

• it is fully programmable (its interface is a real programming language)

• it is open to other codes, is modular and expandable

Placet

Technical Details

• It is written in C++ with a Tcl/Tk user interface

- it is fast

- it has a graphical output

• It is fully programmable and modular:

- complex simulation scripts

- it allows the simulation of feedback loops

- ground motion or other dynamic effects are easy to include

• It is open to other codes:

- it can read MAD/MAD-X deck files, as well as XSIF files

- it makes use of the Universal Parser Library and AML

- can be easily interfaced to Guinea-Pig

- it can use other codes to perform beam transport

⇒ e.g. Placet-BDSIM interface (see Steve Malton’s talk)

• [NEW] Now it embeds Octave, a mathematical toolbox like MatLab (but open-source)

- rich set of numerical tools

- easy to use optimization / control system tool-boxes

Placet

Elements and Tracking

• a beamline is a list of Girder s; each Girder contains a list of Element s

⇒ the following types are supported:

Quadrupole SBend Multipole

AccCavity CrabCavity Kicker

BPM Collimator ExternalObj

⇒ it tracks in 4d or 6d

- thick lenses

- trajectory integration using thin lenses

- longitudinal motion is a boolean flag

⇒ misalignment of the elements is taken into account : offsets, rolls, and pitches

• it takes into account collective effects

- synchrotron radiation emission:

- Incoherent SR emission : all magnets

- Coherent SR emission : sector bends

- long/short-range wakefields
- in the accelerating structures
- in the crab cavities

- geometric and resistive-wall wakes in the collimators

• it can simulate ground motion: sample sites (A,B,C,K), ATL Model

Placet

Beam Models: Slices and Particles

• beam is represented as a train of bunches; bunches are represented using two models

Single ParticlesMacro Particles + 2nd order momenta

1) linear lattices → slices

bunches are cut longitudinally in slices; each slice contains macro-particles that have the same longitudinal

position; each macro-particle is defined by a 6d-vector with second-order moments (fast tracking, LINAC)

particle : (x, x′, y, y′, E, z)

moments :


σxx σxx′ σxy σxy′

σx′x σx′x′ σx′y σx′y′

σyx σyx′ σyy σyy′

σy′x σy′x′ σy′y σy′y′


2) non-linear lattices → single-particles: set of macro-particles defined by 6d-vectors (BC, BDS)

Placet

Beam Models: Slices and Particles

• it can switch between the two models during the tracking

BC Main Linac BDS

Particles Slices Particles

⇒ typical numbers

- linac : 31 longitudinal slices, 11 macro-particles per slice = 341 macro-particles (particles + moments)

- bc, bds : 50.000-100.000 single-particles

• Placet can simulate: bunch compressor, main linac, drive beam, beam delivery system (including crab cavities
and instrumentation), interaction point (using guinea-pig)

Placet

Beam-Based Alignment Algorithms

• in a future Linear Collider, Beam-Based Alignment will be necessary to achieve the target vertical emittance at
the IP

• Beam-based alignment procedures in Placet:

- 1-to-1 Correction

- Dispersion Free Steering

- Ballistic Correction

- Tuning Bumps

- Dispersion Bumps

- Wakefield Bumps

⇒ You need to use them all !

• These procedures take the following arguments:

-beam : beam that has to be used during the optimization

-machines : number of machines to be simulated (random seeds)

-correctors : list of correctors to be used (they can be either quadrupoles or dipoles)

-survey : misalignment schema “Clic”, “Zero”, “None”, or an external user defined Tcl procedure (this
allows the simulation of ground motion, for example)

Placet

Brief History of Placet and New Features

• 1999→2005:

- originally developed by Daniel Schulte (just for fun!) with contributions by Eric D’Amico, Nicolas Leros and
Peder Eliasson

• 2005→today:

- I made some improvements :

C++ redesign (I needed to..)

Octave interface

longitudinal tracking

new elements : collimator, crab cavities, ...

new installation procedure ./configure, cvs repository, web page, cvs web...

- Daniel Schulte : ground motion, dynamic effects, ...

- Helmut Burkhardt and Lionel Neukermans : HTGEN, halo and tail generation

- Giovanni Rumolo : Collimator’s wakefields

- Erik Adli : Coherent Synchrotron Radiation Emission in Sector Bends, Drive Beam Improvements

Introduction

Collaborations Across Europe

- LAL/Orsay (FR)

- ILC Beam-Beam Fast Feedback Simulation

- ATF2 Simulations

- AML/UPL Interface

- Cockcroft Institute (UK)

- ILC / CLIC Crab Cavities

- Ankara University (Turkey)

- Gamma-Gamma interaction at the ILC

- John Adams Institute, Oxford (UK)

- ILC / ATF2 Feedback Systems

- Royal Holloway University of London (UK)

- ILC Collimators, BDSIM integration

- Manchester University (UK)

- ILC Collimators

- PSI (CH)

- CLIC Bunch Compressors

placet placet-octave (improvements..)

Core C C++

User Interface Tcl/Tk Tcl/Tk + Octave

Tracking 4d 6d
Slices ⇒ Particles (LINAC-BDS) Slices ⇔ Particles (BC-LINAC-BDS)

Element Types Quad/Dipole/Bend/Multipole, Acc/DecCavity CrabCavity, Collimator,
Acc/DecCavity DL Element, LinkElement
BPM, TclCall

Collective Effects Short/Long-range WF in Cavities Geometric/Resistive-Wall WF in Collimators
Inc. Synrad in Bend, Quad, Multipoles Longrange Wakefields in the CrabCavities

Coherent Synrad in the SBend

I/O File Format PLACET / MAD (tricky) Universal Parser Library / AML (exp)

Alignment Routines Dipole Kicker / Quadrupole Movers Generic Correctors (Attributes)
1-TO-1, Ballistic, RF, DFS, . . . Octave-1-TO-1, Octave-DFS, Simplex,

MICADO, ...

Placet

Elements

• Hierarchy of C++ classes to describe element types ⇒ each type derives from archetypal object ELEMENT

• List of common attributes to all element types

-name Element name [STRING]

-s Longitudinal position [m] [READ-ONLY]

-x Horizontal offset [um]

-y Vertical offset [um]

-xp Horizontal offset in angle [urad]

-yp Vertical offset in angle [urad]

-roll Roll angle [urad]

-length Element length [m]

-synrad Incoherent Synchrotron Radiation emission [BOOL]

-thin_lens Thin Lens approximation [INT!=0]

-six_dim Enable 6d tracking [BOOL]

-aperture_x Horizontal aperture [m]

-aperture_y Vertical aperture [m]

-aperture_shape Aperture shape [STRING]

• Each sub-class inherits these attributes and defines its own attributes

An example :

CrabCavity -name CRABCAV -length 0.5 -frequency 3.9 -voltage 1.32 -wakelong "wakelong"

Placet

Elements’ Attributes

• You can read/modify each attribute using two commands

- placet:

ElementSetAttribute -element 123 -attribute "length" -value 321.0

set length [ElementGetAttribute -element 123 -attribute "length"]

- placet-octave:

QUAD=placet get number list("main linac", "quadrupole");

placet element set attribute("main linac", QUAD, "strength", 0.0);

QUADS=placet element get attribute("main linac", QUAD, "strength");

• Previously, there was one command for each property:

MultipoleSetStrengthList

DipoleSetStrengthList

QuadrupoleGetStrength

DipoleSetStrength

⇒ Advanced optimization/feedback simulation programs

⇒ A new attribute that turned out to be very useful is -name

New Features

Embedding of Octave in PLACET

• Octave is a high-level interactive language for numerical computations

- it is mostly compatible with MatLab c©

- it can do arithmetic for real and complex scalars and matrices, solve sets of nonlinear algebraic equations,
integrate functions overs finite and infinite intervals, and integrate systems of ordinary differential and
differential-algebraic equations

• Octave’s interpreter and libraries have been embedded into PLACET

- this means that now PLACET includes two interpreters: Tcl and Octave languages

• The backbone of PLACET is still the Tcl Language but a new Tcl keyword Octave has been added

• This keyword can be used in two ways:

- Octave

⇒ without arguments, it opens an interactive Octave shell

- Octave { here some octave code }
⇒ it runs the Octave’s code and continue the Tcl script execution afterwords

Example of 1-to-1 Correction Using placet-octave

#!/home/andrea/bin/placet

source beamline.tcl

source beamdef.tcl

BeamlineSet -name "beamline"

SurveyErrorSet -quadrupole_y 300.0 \

-quadrupole_roll 300.0 \

-cavity_y 300.0 \

-cavity_yp 300.0 \

-bpm_y 300.0

Octave {

B = placet_get_number_list("beamline", "bpm");

C = placet_get_number_list("beamline", "quadrupole");

R = placet_get_response_matrix("beamline", "beam0", B, C);

placet_test_no_correction("beamline", "beam0", "Clic");

b = placet_get_bpm_readings("beamline", B);

c = -pinv(R) * b;

placet_vary_corrector("beamline", C, c);

placet_test_no_correction("beamline", "beam0", "None");

[b,S] = placet_get_bpm_readings("beamline", B);

plot(S, b);

}

New Features

Improvements in the Tracking Module

• Longitudinal motion is now considered

- longitudinal track is a boolean flag of each element

⇒ entire segments of the lattice can be considered as 6d (i.e. the BC but not the ML)

- DRIFT, QUADRUPOLE, DIPOLE, SBEND, CAVITY, SEXTUPOLE and MULTIPOLE’s are already imple-
mented

• Thin-lens approximation is being implemented as a boolean flag (both 4d and 6d)

• simple MPI parallel tracking module exists (never distributed!)

- beam is scattered among the CPUs (# of particles / # of CPUs)

- beam reduction after tracking correctly updates the beamline status (i.e. bpm readings)

- collective effects are not considered yet

Placet

Some Examples

• The results showed in the other presentations

• Beam Delivery System

- Collimator wakefields

- Crab cavity imperfections

- Halo tracking and background

• Preliminary: ATF2 static alignment

Wakefields in the BDS

Crab Cavity

• Crab cavities are required for ILC and CLIC

Crab Cavity Phase Stability

• Required phase stability

can be easily calculated

• What matters is relative

phase of electron and

positron crab cavity

• Horizontal offset at IP is

∆x =
θc

2
∆Φ

• For one 1% luminosity loss

∆Φ ≤ 0.011◦ (will be ad-

dressed by A. Dexter et

al.)

 1.6

 1.65

 1.7

 1.75

 1.8

 1.85

 1.9

 1.95

 2

 2.05

 2.1

 2.15

-40 -30 -20 -10 0 10 20 30 40

L
 [

1
0

3
4
c
m

-2
s

-1
]

!x [nm]

simul.
fit

- The crab cavity is a deflection cavity operated with a 90o phase shift.

- A particle at the center of the bunch gets no transverse momentum kick and hence no deflection at the IP.

- A particle at the front gets a transverse momentum that is equal and opposite to a particle at the back.

- The quadrupoles change the rate of rotation of the bunch.

CrabCavities

ILC Crab Cavity Wakefields

Vertical offset at the IP due to longrange wakefields in the Crab Cavities in case of frequency jitter.

-0.0025

-0.002

-0.0015

-0.001

-0.0005

 0

 0.0005

 0.001

 0.0015

 0.002

 0 20 40 60 80 100 120 140 160 180 200

y
po

si
tio

n
at

 IP
 [m

m
]

Bunch #

∆f/f=0.000045

Collimator Wakefields

Collimators Wakefields

• Wakefield kick (Stupakov, Yokoya):

- geometric and resistive components are evaluated

- inductive or diffractive for the geometric wake fields, short- or long-range, intermediate regimes

- the bunch is subdivided into slices

- the KICK depends both on the longitudinal and on the transverse coordinates of the particles

- Input parameters:

- geometry of the collimator (width, initial and final height, taper length, . . .)

- properties of the material (conductivity σ, relaxation time τ)

- type (spoiler/absorber, vertical/horizontal)

Length Taper TaperFlat

(spoiler) (absorber)

Collimator Wakefields

CLIC BDS Collimator Wakefields

- Luminosity reduction curves due to vertical misalignment of the collimators

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

-15 -10 -5 0 5 10 15

L/
L 0

y offset [µm]

Luminosity reduction curve for vertical misalignment of collimator 2

bunch charge = 5.8e9 * 1.0
* 0.7
* 0.5

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

-15 -10 -5 0 5 10 15

L/
L 0

y offset [µm]

Luminosity reduction curve for vertical misalignment of collimator 4

bunch charge = 5.8e9 * 1.0
* 0.7
* 0.5

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

-15 -10 -5 0 5 10 15

L/
L 0

y offset [µm]

Luminosity reduction curve for vertical misalignment of collimator 6

bunch charge = 5.8e9 * 1.0
* 0.7
* 0.5

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

-15 -10 -5 0 5 10 15

L/
L 0

y offset [µm]

Luminosity reduction curve for vertical misalignment of collimator 8

bunch charge = 5.8e9 * 1.0
* 0.7
* 0.5

A CSR module has been implemented (E. Adli).

CSR can be activated in the Sbend element, with a
simple switch. Implementation is based on the proven
Elegant-implementation, based on paper by Saldin et
al.

User can (and should) adjust number of
bins and filter length for best performance.

Easy to use: described by on-line help:

Currently undergoing final
benchmarking against Elegant and
CSRTrack (E. Adli and F. Stulle)

(Limitations of this approach: 1D model, currently no
shielding effects taken into account).

CSR Module (E.Adli)

HTGEN

Halo generation and tracking

• HTGEN is part of ILPS task

• Identify and study critical issues:

- Halo sources

- Transfer lines (collimation, final focus ...)

• Provide a generic tool for beam halo studies

- beam-gas generator, halo tracking, photon tracking, multiple scattering in spoilers are already available
Placet package

- More details and code available in

http://n.home.cern.ch/n/neukerma/www

HTGEN

Halo generation and tracking

• The beam gas pressure and apertures can be separately specified for each element

• The particles hitting the beam-pipe are considered lost

⇒ beam-gas scattering form LINAC and BDS: a fraction of 10−4 of the particles impacts on the spoilers

Static Alignment

Preliminary: ATF2 Static Alignment

• Simulation Parameters

- atf2 lattice

- σRMS = 100µm quadrupole and sextupole positions

- σq−strength = 0.01 % quadrupoles’ strength jitter

- observable : final vertical beam size σres = 1 nm

 0

 20

 40

 60

 80

 100

 120

 200 400 600 800 1000 1200 1400 1600 1800 2000

co
un

ts
 [#

]

σy [nm]

OPTIMIZED
NOMINAL

INITIAL

Example of ATF2 Alignment Using placet-octave

Octave {

global nIteration=0;

function beam_size = FinalSize(beamline)

global nIteration;

target_sx = 2.17071070688;

target_sy = 0.0387071349;

[E,B]=placet_test_no_correction(beamline, "beam0", "None");

beam_sizey=std(B(:,3))+(randn()*0.001);

beam_sizex=std(B(:,2))+(randn()*0.001);

beam_size=sqrt((beam_sizey - target_sy)**2 + (beam_sizex - target_sx)**2/100.0);

nIteration++;

endfunction

we define the correction

QI=placet_get_number_list("ATF2", "quadrupole");

SI=placet_get_number_list("ATF2", "sextupole");

CORR = [QI, QI, QI, SI, SI];

LEVR = [repmat("x", size(QI’));

repmat("y", size(QI’));

repmat("strength", size(QI’));

repmat("x", size(SI’));

repmat("y", size(SI’))];

STEP = [10*ones(size([QI, QI])), 0.0001*ones(size(QI)), 5*ones(size([SI, SI]))];

[optimum, merit] = placet_optimize("ATF2", "FinalSize", CORR, LEVR, STEP);

}

Static Alignment

Preliminary: ATF2 Static Alignment

• Optimization Procedure

- 1-to-1 correction using the quadrupoles

- simplex optimization using quadrupole and sextupoles as correctors

- quadrupole : movers, strength

- sextupole : movers

 0

 20

 40

 60

 80

 100

 120

 50 100 150 200 250

co
un

ts
 [#

]

σy [nm]

OPTIMIZED
NOMINAL

⇒ about 1200 iterations required!

Examples

PLACET Graphical Output

• Longitudinal Beam Profile under the effects of transverse wakefield

Overview of the new features (I)

• PLACET has undergone a redesign toward pure C++ code

- it is faster

- easy to maintain and extend

• Collimator wake fields (both geometric and resistive wall) have been implemented to allow full tracking

- luminosity reduction curves due to the wake fields have been obtained for initial jitters and different config-
urations of collimator misalignments

- the performances of the nonlinear collimation system including wake fields have to be studied

• The model for wake fields includes nonlinear and near-wall effects

• Octave interface opened the way to even more complex simulation scripts and much more, thanks to its high-level
language for scientific computations

- Correction algorithms and optimizations are easy to write

- Feedback loops can take advantage of the extensive Octave’s library of optimization routines

- Excellent Results in BDS Alignment

Overview of some other new features (II)

• Longitudinal motion is a boolean flag : only segments of lattice can be 6d (like option -synrad)

• ParticlesToSlices, besides the existing SlicesToParticles

• CrabCavities in the code, with independent longrange wakefields

• Possibility of creating external, dynamically loadable, elements

• Interfacing with BDSIM, for accurate HALO tracking in the Collimators (RHUL):

- parallel tracking: placet/BDSIM, with exchange of halo data at each Collimator

- placet tracks the core bunch along the BDS, and the HALO inside the collimators

- BDSIM tracks the halo along the BDS, and receives from placet the Collimators wakefield kick

• Future Developments

⇒ PLACET/GdfidL interface

⇒ Test of Dispersion Free Steering in CTF3, Flight Simulator for ATF2

⇒ Can placet-octave be used in a control room?

http://savannah.cern.ch/projects/placet

Appendix

New PLACET Installation Procedure

• Now we have a ./configure script:

- it checks the characteristics of the computer in use and writes the appropriate makefiles

- it accepts the following options:

./configure

-prefix=DIR installs placet in $DIR

-enable-htgen enables the use of HTGEN
-enable-octave enables the use of Octave
-with-gsldir=DIR GNU Scientific Library is installed in $DIR

-with-octdir=DIR Octave is installed in $DIR

-with-htgendir=DIR HTGEN is installed in $DIR

• Installation procedure

$.> ./configure --enable-octave --with-gsldir=$HOME/gsl-1.8 --prefix=$HOME

$.> make

$.> make install

Installation procedure on AFS

• There is a special version of ./configure for computers with /afs, that automatically sets all these paths to the
proper directories on AFS. On a CERN computer, you can install placet with

$.> ./configure.AFS --prefix=$HOME

$.> make

$.> make install

⇒ “stable” makefile creates :

${prefix}/bin/placet

${prefix}/bin/placet-htgen

⇒ “development” makefile creates :

${prefix}/bin/placet-development

${prefix}/bin/placet-htgen

${prefix}/bin/placet-octave

• and also : ground, grid, mad2gp, gp2mad, ... and other utilities

Interfacing of PLACET with GdfidL

• Original idea was to create a “wakefields file format” to exchange wakefields data between different tracking
codes

• The wakefields would be generated by GdfidL or similar programs

• First problem : data compression, the amount of data produced by GdfidL can be as big as several hundreds
Mb’s per each collimator

- we need to make a multipole expansion of the Wake-Potentials

- we need to calculate the wakefield kick from the expansion

After several discussions with Warner, we agreed about a file format for the (uncompressed) wake-potentials (GdfidL
→ multipole expansion)

- GdfidL writes on disk a set of “slices” containing the Longitudinal Wake-Potential on a grid

• I have created a set of utilities to perform the multipole expansion and to calculate

the transverse components of the Wake-Potential

• Multipole Expansion:

$.> mpolexp2d --help

mpolex2d - 3D Multipole Expansion of a (Wake)Potential, version 0.1

Written by Andrea Latina <andrea.latina@cern.ch>, Apr 26 2007

USAGE: mpolexp2d [OPTIONS] K [FILE]...

DESCRIPTION:

This program calculates the multipole moments of an input function,

up to the ‘K’-th term.

OPTIONS:

--help Display this help

--version Display version information

--rx Horizontal radius of the integration disk (’XX’ or ’XX%’)

--ry Vertical radius of the integration disk (’YY’ or ’YY%’)

--nr=N Number of radial points for the integration (default 50)

--bilinear|bicubic Use [bilinear|bicubic] interpolation (default bilinear)

--gdfidl|octave Assume the input is in [Octave|GdfidL]’s text format

(default GdfidL)

With no FILE, or when FILE is -, read standard input.

$.>

-0.002 -0.001 0 0.001 0.002 0.003 0.004-0.002
-0.0015

-0.001
-0.0005

 0
 0.0005

 0.001
 0.0015

 0.002

-30
-25
-20
-15
-10

-5
 0

’< ./gdfidl2datafile < warner.dat | ./datafile2gnuplot.m ’
’< ./mpolexp2d 5 < warner.dat | ./apply2d.m ’

x

y

-0.002-0.001 0 0.001 0.002 0.003 0.004 -0.002-0.0015-0.001-0.0005 0 0.0005 0.001 0.0015 0.002

-30
-25
-20
-15
-10

-5
 0

’< ./mpolexp2d 5 < warner.dat | ./apply2d.m ’
’< ./gdfidl2datafile < warner.dat | ./datafile2gnuplot.m ’

x y

• Calculation of the transverse components of the Wake-Potential

$> ./mpolexp2Wpotential

mpolexp2Wpotential - Reads the Multipole Expansion of a Wake-Potential

and returns its components at any point, version 0.1

Written by Andrea Latina <andrea.latina@cern.ch>, Apr 26 2007

USAGE: mpolexp2Wpotential wakepotential.dat < input.dat

Where ‘input.dat’ is a set of X Y Z triplets

$.>

• In which I calculate the transverse components, applying the Panofsky-Wenzel theorem

• TO DO LIST

- deal with the charge distribution

- include this code into placet

