Generalized Long-Range Transverse Wakefields

A. Kabel

Complex Eigenfields

Normal Modes

Coupling Matrix

Tracking

Conclusion

Generalized Long-Range Transverse Wakefields

A. Kabel

Advanced Computations Department Stanford Linear Accelerator Center

イロト イポト イヨト イヨト

MQ (P

December 11, 2007

Generalized Transverse Wakefields:

Transverse Wakefields

A. Kabel

Complex Eigenfields

Normal Modes

Coupling Matrix

Tracking

Conclusion

Required because of cavity design and fabrication tolerances:

- Asymmetries may lead to anisotropic dipole modes (different $R/Q, \omega$ for different planes)
- Principal axes may deviate from accelerator x, y system \rightarrow coupling
- Asymmetry + Asymmetric lossy boundary conditions: Rotating modes, \rightarrow coupling
- Beam Dynamics effects need to be estimated

イロト イポト イヨト イヨト

Generalization of Wakefield Kicks

Transverse Wakefields

A. Kabel

Complex Eigenfields

Normal Modes

Coupling Matrix

Tracking

Conclusion

ACD's *Omega3p* solves the double-curl eigenvalue equation for E

$$\boldsymbol{\nabla} \times \frac{1}{\mu} \boldsymbol{\nabla} \times \mathbf{E}_n(\mathbf{x}) - \omega_n^2 \varepsilon \mathbf{E}_n(\mathbf{x}) = \mathbf{0} + f(\omega) \mathbf{E}_n \tag{1}$$

FEM discretization turns it into a non-linear eigenvalue equation:

$$M\mathbf{e}_n - \omega_n^2 S\mathbf{e}_n = f(\omega) R\mathbf{e}_n$$
 (2)

M, *S*, *R*: *Mass, Stiffness, Damping* matrices *R* removes self-adjointness: complex eigenvalues + solutions

イロト イポト イヨト イヨト

MQ (P

Generalization of Wakefield Kicks

Transverse Wakefields

A. Kabel

Complex Eigenfields

Normal Modes

Coupling Matrix

Tracking

Conclusion

ACD's *Omega3p* solves the double-curl eigenvalue equation for *E*

$$\nabla \times \frac{1}{\mu} \nabla \times \mathbf{E}_n(\mathbf{x}) - \omega_n^2 \varepsilon \mathbf{E}_n(\mathbf{x}) = 0 + f(\omega) \mathbf{E}_n$$
 (1)

FEM discretization turns it into a non-linear eigenvalue equation:

$$M\mathbf{e}_n - \omega_n^2 S\mathbf{e}_n = f(\omega)R\mathbf{e}_n$$
 (2)

M, *S*, *R*: *Mass, Stiffness, Damping* matrices *R* removes self-adjointness: complex eigenvalues + solutions

イロト イポト イヨト イヨト

Rotating Modes

Transverse Wakefields

A. Kabel

Complex Eigenfields

Normal Modes

Coupling Matrix

Tracking

Conclusion

 $R \neq 0$, simplest case: Damped dipole mode With damped and sufficiently asymmetric cavities: degeneracies are lifted, mode splits into two elliptically polarized modes:

イロト イポト イヨト イヨト

MQ (P

Rotating Modes: Movie

Transverse Wakefields				
A. Kabel				
Complex Eigenfields				
Normal Modes				
Coupling Matrix				
Tracking				
Conclusion				

A. Kabel Generalized Long-Range Transverse Wakefields

◆ロ > ◆母 > ◆臣 > ◆臣 >

E

900

Normal Mode Expansion

Transverse Wakefields

A. Kabel

Complex Eigenfields

Normal Modes

Coupling Matrix

Tracking

Conclusion

Non-selfadjoint problem, biorthogonality relations:

$$\langle m | n
angle = \int_{\Omega} \mathsf{E}_m^{adj}(\mathsf{x}) \cdot \mathsf{E}_n(\mathsf{x}) \mathrm{d}^3 x = \delta_{nm} + \mathcal{O}(1/Q)$$

Decompos

$$a_n^{\mathbf{m}}(\omega) = \frac{-i\omega}{\omega_n^{*2} - \omega^2} \int_{\Omega} \mathbf{j}^{\mathbf{m}}(\mathbf{x}, \omega) \cdot \mathbf{E}_n^{*}(\mathbf{x}) \mathrm{d}^3 x$$

 $\mathbf{E}(\mathbf{x},\omega) = \sum a_n(\omega)\mathbf{E}_n(\mathbf{x})$

◆ロ > ◆母 > ◆臣 > ◆臣 >

nar

э

Normal Mode Expansion

Transverse Wakefields

A. Kabel

Complex Eigenfields

Normal Modes

Coupling Matrix

Tracking

Conclusion

Non-selfadjoint problem, biorthogonality relations:

$$\langle m | n \rangle = \int_{\Omega} \mathbf{E}_m^{\star}(\mathbf{x}) \cdot \mathbf{E}_n(\mathbf{x}) \mathrm{d}^3 x = \delta_{nm} + O(1/Q)$$

Decompose:

$$a_n^{\mathbf{m}}(\omega) = \frac{-i\omega}{\omega_n^{*2} - \omega^2} \int_{\Omega} \mathbf{j}^{\mathbf{m}}(\mathbf{x}, \omega) \cdot \mathbf{E}_n^{*}(\mathbf{x}) \mathrm{d}^3 \mathbf{x}$$

 $\mathbf{E}(\mathbf{x},\omega) = \sum a_n(\omega)\mathbf{E}_n(\mathbf{x})$

◆ロ > ◆母 > ◆臣 > ◆臣 >

nar

э

Normal Mode Expansion

Transverse Wakefields

A. Kabel

Complex Eigenfields

Normal Modes

Coupling Matrix

Tracking

Conclusion

Non-selfadjoint problem, biorthogonality relations:

$$\langle m | n \rangle = \int_{\Omega} \mathsf{E}_{m}(\mathsf{x}) \cdot \mathsf{E}_{n}(\mathsf{x}) \mathrm{d}^{3}x = \delta_{nm} + O(1/Q)$$

Decompos

$$a_n^{\mathbf{m}}(\omega) = \frac{-i\omega}{\omega_n^{*2} - \omega^2} \int_{\Omega} \mathbf{j}^{\mathbf{m}}(\mathbf{x}, \omega) \cdot \mathbf{E}_n^{\star}(\mathbf{x}) \mathrm{d}^3 x$$

 $\mathbf{E}(\mathbf{x},\omega) = \sum a_n(\omega)\mathbf{E}_n(\mathbf{x})$

◆ロ > ◆母 > ◆臣 > ◆臣 >

nar

э

Kick Calculation:

Transverse Wakefields

A. Kabel

Complex Eigenfields

Normal Modes

Coupling Matrix

Tracking

Conclusion

- Expand j in transverse multipoles
- Transform to time domain
- Apply Panofsky-Wenzel
- We are interested in the *coupling matrix*

$$K_{ik} = -\frac{\partial \Delta x'_i}{\partial x_k}$$

A. Kabel Generalized Long-Range Transverse Wakefields

◆ロ > ◆母 > ◆臣 > ◆臣 >

э

DQ P

The coupling matrix:

Transverse Wakefields

A. Kabel

Complex Eigenfields

Normal Modes

Coupling Matrix

Tracking

Conclusion

Get it by fourier-transforming in angle and time:

$$\varphi_m = \frac{1}{2\pi R^m} \int_0^{2\pi} \int_0^L E_{n,z}^{\parallel}(R,\zeta,z) e^{i(m\zeta - \omega_n z)} \mathrm{d}z \mathrm{d}\zeta$$

With complex sine- and cosine coefficients:

$$\varphi = a_r - b_i + i(a_i - b_r)$$
$$\bar{\varphi} = a_r + b_i + i(a_i + b_r)$$

Looks like kick factor, but four free parameters/eigenmode:

$$K = -\frac{q_l q_t}{2\omega_n \gamma m} \Im e^{-i\omega_n t} \begin{pmatrix} a \\ b \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}^+ = \frac{q_l q_t}{2\omega_n \gamma m} \left[\sin \omega_n t \begin{pmatrix} |a|^2 & \Re a^* b \\ \Re a b^* & |b|^2 \end{pmatrix} - \cos \omega_n t \begin{pmatrix} 0 & \Im a^* b \\ \Im a b^* & 0 \end{pmatrix} \right]$$

A. Kabel

Coupling:

Transverse Wakefields

A. Kabel

Complex Eigenfields

Normal Modes

Coupling Matrix

Tracking

Conclusion

- Kick factor has to be generalized to a hermitian *kick matrix*
- \bullet Real-valued off-diagonal elements can be removed by rotating by δ
- Imaginary ones remain:

$$H = \frac{\sin \omega_t}{2} (p_{\bar{x}}^2 + \beta^2 p_{\bar{y}}^2) - \frac{\alpha}{2} (\bar{x}^2 + \bar{y}^2 (p_{\bar{x}} \bar{y} - p_{\bar{y}} \bar{x}) \sin \Delta)$$

- (β : amplitude ratio, Δ : phase angle (a, ib^*), $\alpha = \frac{|a|^2 q_l q_t}{2\omega_n \gamma m}$)
- Mode can be characterized by strength α , excentricity $1 \beta^2$, coupling angles δ and Δ .

(日) (同) (三) (三)

Generalized Long-Range Transverse Wakefields

A. Kabel

Complex Eigenfields

Normal Modes

Coupling Matrix

Tracking

Conclusion

Adapted long-range transverse part in *Lucretia* WF tracking algorithm, generalized for offset kicks $X = (1, \mathbf{x})$, K complex 2×3 coupling matrix:

$$\Delta \mathbf{p}_i = \Re \sum_{n,k < i} q_i \mathcal{K}_n e^{i\omega(T_i - T_k)} q_k X_k$$

Bunch-by-bunch algorithm:

$$\Delta \mathbf{p}_{i} = \Re \sum_{n} e^{i\omega_{n}t_{i}} q_{i} K_{n} \Phi_{n,i-1}$$
$$\Phi_{i,n} = e^{-i\omega_{n}T} (\Phi_{i,n} + e^{-i\omega_{n}t_{i-1}} q_{i-1} X_{i-1})$$

Kick matrix K is obtained by post-processing Omega3p output

イロト イポト イヨト イヨト

MQ (P

Sanity Check

Transverse Wakefields

A. Kabel

Complex Eigenfields

Normal Modes

Coupling Matrix

Tracking

Conclusion

Check different combinations of initial offsets, wakefield configuration. All quantities normalized to their maximum values.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Δx	Δy	K_{xx}	K_{yy}	$\Re K_{xy}$	$\Im K_{xy}$	ϵ_x	ϵ_y	$\hat{\epsilon}_x$	$\hat{\epsilon}_y$
$ \begin{vmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 1.0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1.0 & 0 \\ 1 & 0 & 1 & 1 & .05 & 0 & 1.0 & .034 \\ 1 & 0 & 1 & 1 & 0 & .05 & 1.0 & .033 \\ \hline 0 & 1 & 0 & 1 & 0 & 0 & 1.0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 10^{-8} & 10^{-12} \\ 0 & 1 & 1 & 1 & 0 & 0 & 10^{-8} & 1.0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 & 10^{-8} & 1.0 \\ \hline \end{array} $	1	0	0	1	0	0	10^{-10}	0		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	0	1	0	0	0	1.0	0		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	0	1	1	0	0	1.0	0		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	0	1	1	.05	0	1.0	.034		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	0	1	1	0	.05	1.0	.033		
$ \begin{vmatrix} 0 & 1 & & 1 & 0 & 0 & 0 \\ 0 & 1 & & 1 & 1 & 0 & 0 \\ 0 & 1 & & 1 & 1 & 0 & 0 \\ 0 & 1 & & 1 & 0^{-11} & 0^{-11} & 0^{-11} & 0^{-11} & 0^{-11} & 0^{-11} \end{vmatrix} $	0	1	0	1	0	0	1.0	0		
$ \begin{vmatrix} 0 & 1 & & 1 & 1 & 0 & 0 \\ 0 & 1 & & 1 & 1 & 05 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	0	1	1	0	0	0	10 ⁻⁸	10^{-12}		
$0 1 1 1 0 0 021 10 10^{-11} 102$	0	1	1	1	0	0	10 ⁻⁸	1.0		
	0	1	1	1	.05	0	.034	1.0	10^{-11}	1.03
0 1 1 1 0 .05 .032 1.0 0.023 0.70	0	1	1	1	0	.05	.032	1.0	0.023	0.70

A. Kabel

Generalized Long-Range Transverse Wakefields

Tracking Results

Transverse Wakefields

A. Kabel

Complex Eigenfields

Normal Modes

Coupling Matrix

Tracking

Conclusion

Drastically simplified model:

- No errors, misalignments (exception below)
- 200 bunches only
- Centroids only
- (no product distribution centroids/real transverse)
- No 3rd band, no imperfections

イロト イポト イヨト イヨト

Coupling 1

Closeup

Coupling 2

Closeup

Coupling removed

Coupling removed

Randomization of Cavities

Transverse Wakefields

- A. Kabel
- Complex Eigenfields
- Normal Modes
- Coupling Matrix
- Tracking
- Conclusion

- Previous results: worst case
- More likely: cavities have scattered fabrication errors
- Add per-cavity random error
- Look at 1.0005 scaling point, increasingly randomize

イロト イポト イヨト イヨト

MQ (P

Randomized Spectra

Conclusion

Transverse Wakefields

A. Kabel

- Complex Eigenfields
- Normal Modes
- Coupling Matrix
- Tracking
- Conclusion

- Wakefields of realistic cavities may have fewer symmetries: coupling, rotating modes
- Generalized normal-mode expansion formalism: Kick factors need to be replaced by hermitian kick matrices
- We have a toolchain to extract these matrices from high-fidelity frequency-domain calculations and plug them into tracking studies
- Proof-of principle tracking studies with Lucretia
- Future studies: 3rd bands, imperfections, misalignments, feedback, ...

イロト イポト イヨト イヨト