

Large Scale 3D Wakefield Simulations with PBCI

<u>S. Schnepp</u>, W. Ackermann, E. Arevalo, E. Gjonaj, and T. Weiland

"Wake Fest 07 - ILC wakefield workshop at SLAC" 11-13 December 2007

Technische Universität Darmstadt, Fachbereich Elektrotechnik und Informationstechnik Schloßgartenstr. 8, 64289 Darmstadt, Germany - URL: www.TEMF.de

- Introduction
- Numerical Method
- Parallelization Strategy
- Modal Termination of Beam Pipes
- PBCI Simulation Examples

Introduction

Motivation for PBCI:

- A new generation of LINACs with ultra-short electron bunches 1.
 - bunch size for ILC: 300 µm а.
 - bunch size for LCLS: 20 µm b.
- 2. Geometry of tapers, collimators... far from rotational
 - 8 rectangular collimators at ILC-ESA in the design process а.
 - 30 rectangular-to-round transitions in the undulator of LCLS b.
- 3. Many (semi-) analytical approximations become invalid
 - based on rotationally symmetric geometry а.
 - *low frequency assumptions (Yokoya, Stupakov)* b.
 - detailed physics needed for high frequency wakes (Bane) С.

ILC-ESA collimator #8

bunch length	300µm	
collimator length	~1.2m	
catch-up distance	~2.4m	

S. Schnepp et al. Institut für Theorie

Elektromagnetischer Felder (TEMF)

PITZ diagnostics double cross

bunch length	2.5mm		
bunch width	2.5mm		
structure length	325mm		

Tapered transition @PETRA III

Theorie Elektromagnetischer Felder (TEMF) S. Schnepp et al. Institut für Theorie

There is an actual demand for:

1. Wake field simulations in arbitrary 3D-geometry

3D-codes

- 2. Accurate numerical solutions for high frequency fields *(quasi-) dispersionless codes*
- 3. Utilizing large computational resources for ultra-short bunches *parallelized codes*
- 4. Specialized algorithms for long accelerator structures *moving window codes*

An (incomplete) survey of available codes

				Dimensions	Nondispersive	Parallelized	Moving window
it für Theorie Elektromagnetischer Felder (TEMF)	1980		BCI / TBCI	2.5D	Νο	Νο	Yes
	20 years		ΝΟΥΟ	2.5D	Yes	Νο	Νο
			ABCI	2.5D	Νο	Νο	Yes
			MAFIA	2.5/3D	Νο	Νο	Yes
		me	GdfidL	3D	Νο	Yes	Yes
	5 years	Ï	Tau3P	3D	Νο	Yes	Νο
			ЕСНО	2.5/3D	Yes	Νο	Yes
			CST Particle Studio	3D	Νο	Νο	Νο
o. ou Institu		ļļ	PBCI	3D	Yes	Yes	Yes
6	2007	\vee	NEKCEM	3D	Quasi	Yes	Νο

- Introduction
- Numerical Method
- Parallelization Strategy
- Modal Termination of Beam Pipes
- PBCI Simulation Examples

TECHNISCHE UNIVERSITÄT DARMSTADT

The FIT discretization

Topology of FIT:

 $\mathbf{C}^{T} = \tilde{\mathbf{C}}$ \Longrightarrow semidiscrete energy conservation

 $\tilde{\mathbf{S}}\mathbf{C} = \mathbf{S}\tilde{\mathbf{C}} = 0$ \implies semidiscrete charge conservation

Numerical Method

Using the conventional leapfrog time integration

$$\begin{pmatrix} \widehat{\mathbf{e}}^{n+1/2} \\ \widehat{\mathbf{h}}^{n+1} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \Delta t \mathbf{M}_{\varepsilon}^{-1} \mathbf{C}^{T} \\ -\Delta t \mathbf{M}_{\mu}^{-1} \mathbf{C} & \mathbf{1} - \Delta t^{2} \mathbf{M}_{\mu}^{-1} \mathbf{C} \mathbf{M}_{\varepsilon}^{-1} \mathbf{C}^{T} \end{pmatrix} \begin{pmatrix} \widehat{\mathbf{e}}^{n-1/2} \\ \widehat{\mathbf{h}}^{n} \end{pmatrix} - \begin{pmatrix} \Delta t \mathbf{M}_{\varepsilon}^{-1} \widehat{\mathbf{j}}^{n} \\ \mathbf{0} \end{pmatrix}$$

Behavior of numerical phase velocity vs. propagation angle

S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) 9

Implementing a dispersion-free scheme leads to this:

Numerical phase velocity and amplification vs. propagation angle

- Introduction
- Numerical Method
- Parallelization Strategy
- Modal Termination of Beam Pipes
- PBCI Simulation Examples

Parallelization Strategy

A balanced domain partitioning approach

total computational domain

Equal loads assigned to each node: W_{No}

$$de = \alpha_{\text{Node}} \Box \sum_{\text{Grid Points}} w_i$$

S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF)

Parallelization Strategy

Example: Tapered transition for PETRA III

Parallel performance tests 20 Number of grid cells 1E+6 Ideal speedup 16 Ideal 12 Speedup 8 1E+06 cells 4 0 12 16 8 20 0 4 Number of Processors

S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF)

Parallel performance tests 20 Number of grid cells 10E+6 \leftarrow Ideal speedup 16 Ideal 12 Speedup 8 10E+06 cells 4 0 12 16 8 20 0 4 Number of Processors

S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF)

Parallel performance tests 20 Number of grid cells 50E+6 -----Ideal speedup 16 Ideal 12 Speedup 8 50E+06 cells 4 0 12 8 16 20 0 4 Number of Processors

Parallel performance tests 20 Number of grid cells 100E+6 Α-Ideal speedup 16 Ideal 12 Speedup 8 100E+06 cells 4 0 12 8 16 20 0 4 Number of Processors

TECHNISCHE

UNIVERSITÄT DARMSTADT

Parallel performance tests

TEMF Cluster: 20 INTEL CPUs @ 3.4GHz, 8GB RAM, 1Gbit/s Ethernet Network

Parallel performance tests

TEMF Cluster: 20 INTEL CPUs @ 3.4GHz, 8GB RAM, 1Gbit/s Ethernet Network

Elektromagnetischer Felder (TEMF) S. Schnepp et al. Institut für Theorie

- Introduction
- Numerical Method
- Parallelization Strategy
- Modal Termination of Beam Pipes
- PBCI Simulation Examples

S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) 21

Modal Termination of Pipes

- 1. Indirect integration of potential for 2D-structures (Weiland 1983, Napoly 1993)
- 2. Generalization for 3D-structures (A. Henke and W. Bruns, EPAC'06, July 2006, Edinburgh, UK)

$$\vec{G}^{TM} = \vec{e}_x \left(E_x^{TM} + cB_y^{TM} \right) + \vec{e}_y \left(E_y^{TM} - cB_x^{TM} \right) + \vec{e}_z E_z$$
 irrotational

- "Indirect methods for wake potential integration", I. Zagorodnov, PRSTAB 9 '06

- "Eigenmode expansion method in the indirect calculation of wake potential in 3D structures",

X. Dong, E. Gjonaj, ICAP'06

TECHNISCHE

UNIVERSITÄT DARMSTADT

Modal Termination of Pipes

1. Time domain integration in the inhomogeneous sections:

$$-\frac{1}{Q}\int_{-\infty}^{0} dz \, E_z(z,t=\frac{z+s}{c})$$

- 2. Modal analysis at z = 0: $E_z(x, y, 0, t) \implies E_z^n(0, t), e_z^n(x, y)$
- 3. Compute spectral coefficients (FFT): $E_z^n(0,t) \Rightarrow C_n(\omega)$
- 4. Compute wake potential contribution per mode (IFFT):

$$\frac{C_n(\omega)}{i(\omega/c - k_{z,n}(\omega))} \implies W_n(s)$$

5. Compute wake potential transition in the outgoing pipe:

$$-\frac{1}{Q}\int_{0}^{\infty} dz \, E_{z}(z,t=\frac{z+s}{c}) = -\frac{1}{Q}\sum_{n}e_{z}^{n}(x,y)W_{n}(s)$$

S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF)

Modal Termination of Pipes

Using FD reconstruction in long intermediate pipes

- Introduction
- Numerical Method
- Parallelization Strategy
- Modal Termination of Beam Pipes
- PBCI Simulation Examples

ILC-ESA collimator

Elektromagnetischer Felder (TEMF) Theorie S. Schnepp et al. Institut für Theorie 27

ILC-ESA collimator

Elektromagnetischer Felder (TEMF) S. Schnepp et al. Institut für Theorie

TESLA / HOM coupler

TESLA 9-cell cavity

bunch length	1mm		
bunch charge	1nC		
cavity length	1.5m		
no. of grid points	~760M		
no. of processor cores	408		
simulation time	~40hrs		

S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF)

TESLA / HOM coupler

HOM / HOM-RF coupler (present DESY design)

TECHNISCHE UNIVERSITÄT DARMSTADT

-5

-4

-3

-2

-1

0

s/σ

1

2

3

4

5

Upstream coupler

S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF)

TECHNISCHE UNIVERSITÄT DARMSTADT TESLA / HOM coupler

s/σ

Downstream coupler

TESLA / HOM coupler

S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF)

TECHNISCHE UNIVERSITÄT DARMSTADT

Elektromagnetischer Felder (TEMF)

TESLA / HOM coupler

Present DESY Design

Transverse wake potential

0

Beam view

S. Schnepp et al. Institut für Theorie

S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF)

Elektromagnetischer Felder (TEMF)

Theorie

S. Schnepp et al. Institut für Theorie

TESLA / HOM coupler

Proposed DESY Design (Dohlus, Zagorodnov)

Transverse wake potential

0

Beam view (symmetrical coupler positioning)

TESLA / HOM coupler

proposed

present

Tapered Transition PETRA III

41 *"Wake Computations for Undulator Vacuum Chambers of PETRA III",* R. Wanzenberg, PAC'07

Low-Emittance Injector Development DESY/Zeuthen

Optimization studies performed

TECHNISCHE UNIVERSITÄT DARMSTADT

Plot of the horizontal wake potential for different shifts Δx of the particle path with respect to the longitudinal axis.

TECHNISCHE UNIVERSITÄT DARMSTADT

A minimum of the transverse kick was found at 8mm distance.

Elektromagnetischer Felder (TEMF) S. Schnepp et al. Institut für Theorie

Large Scale 3D Wakefield Simulations with PBCI

<u>S. Schnepp</u>, W. Ackermann, E. Arevalo, E. Gjonaj, and T. Weiland

"Wake Fest 07 - ILC wakefield workshop at SLAC" 11-13 December 2007

Technische Universität Darmstadt, Fachbereich Elektrotechnik und Informationstechnik Schloßgartenstr. 8, 64289 Darmstadt, Germany - URL: www.TEMF.de