

New LDC optimization studies based on the "LiC Toy tool"

Interplay of TPC and SET: influence on the momentum resolution, and complementary study on the effectiveness of the SIT

ILD Workshop, DESY-Zeuthen, 14–16 Jan. 2008

Why fast simulation?

- Not intended to replace full simulation, but to achieve quick response to local detector modifications
- Simple to use, even by non experts
- Doesn't demand much preparation time
- Quick results, can be installed on a laptop
- Differences between various detector setups can be resolved quickly
- Human readable, simplified detector description should be standardized (contents see slide at the end)

The LiC Detector Toy Software

- Simple, but flexible and powerful tool, written in MatLab
- Detector design studies
 - Geometry: cylinders (barrel) or planes (forward/rear)
 - Material budget, resolutions, inefficiencies
- Simulation
 - Solenoid magnetic field, helix track model
 - Multiple scattering, measurement errors and inefficiencies
 - No further corruption, therefore no pattern recognition
 - Strips and pads, uniform and gaussian errors (in TPC with diffusion corr.)
- Reconstruction
 - Kalman filter
 - Optimal linear estimator according to Gauss-Markov (no corruption)
 - Fitted parameters and corresponding covariances at the beamtube
- Output
 - Resolution of the reconstructed track parameters inside the beam tube
 - Impact parameters (projected and in space)
 - Test quantities (pulls, χ^2 , etc.)

Basic detector description (VTX, SIT)

Description	Beam pipe		Vertex	detector	· (VTX)		Inner	tracker
Name	ХВТ	VTX1	VTX2	VTX2	VTX4	VTX5	SIT1	SIT2
R [mm]	14	16	26	37	48	60	150	290
z _{max} [mm]		50	120	120	120	120	200[*]	390[*]
z _{min} [mm]		-50	-120	-120	-120	-120	-200[*]	-390 ^[*]
Stereo angle		(π/2)	(π/2)	(π/2)	(π/2)	(π/2)	0°/10°	0°/10°
d [X ₀]	0.0025	0.002	0.002	0.002	0.002	0.002	0.0175	0.0175
Pitch [µm]	passive	25x25	25x25	25x25	25x25	25x25	50/50	50/50
Remarks		pixels	pixels	pixels	pixels	pixels	strips	strips

[*]: For this study, values changed w. r. t. the layout defined in the DOD, in order to cover the range $\theta > 39^{\circ}$

Basic detector description (TPC)

Description	Inner wall		196 pad rings	, or GEMs					
Name	XTPCW1		TPC1-TPC196						
R [mm]	340		362 – 1580						
z _{max} [mm]	2160		2160						
z _{min} [mm]	-2160		-2160						
d [X ₀]	0.01		0.0000125 (fo	r each layer)					
			σ_1 (pad size)	σ_2 (diffusion)					
Errors [µm]	nassiva	РФ	Case 1: 50 ^[1]	$350^{[2]}$ [um/m ^{1/2}]					
$\sigma = \sqrt{(\sigma_1^2 + \Delta z[m]^* \sigma_2^2)}$	passive	KΨ	Case 2: 2000/√12 ^[2]	550. Γμηλη Ι					
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5800 [µm/m ^{1/2}]							

[1]: M. Dixit et al., Micromegas TPC studies at high magnetic fields using the charge dispersion signal, VCI 2007, p. 254 [2]: P. Colas, I. Giomataris, V. Lepeltier, M. Ronan, First test of a Micromegas TPC in a magnetic field, VCI 2004, p. 181

ILD Workshop, DESY-Zeuthen, 14–16 Jan. 2008

New LDC optimization studies ...

Display of basic detector description

ILD Workshop, DESY-Zeuthen, 14–16 Jan. 2008

THIS STUDY

- Basic setup:
 - VTX, extended SIT, TPC^{*)}

• Modifications:

- Variant 1: VTX, extended SIT, TPC^{*)}, **SET**
- Variant 2: VTX, TPC^{*)} (no SIT, no SET)
- Studies:
 - Study 1: Compare variant 1 with basic setup
 - Study 2: Compare variant 2 with basic setup
- *) TPC: case 1, case 2

Modifications, variant 1: adding a silicon external tracker (SET) (VTX, SIT and TPC see above)

Description	TPC outer wall	Externa	al tracker
Name	XTPCW2	SET1	SET2
R [mm]	1600	1610	1620
z _{max} [mm]	2160	2160	2160
z _{min} [mm]	-2160	-2160	-2160
Stereo angle		0°/10°	0°/10°
d [X ₀]	0.02	0.001	0.001
Pitch [µm]	passive	70/70	70/70
Remarks		strips	strips

ILD Workshop, DESY-Zeuthen, 14–16 Jan. 2008

New LDC optimization studies ...

Display of modifications, variant 1: adding a silicon external tracker (SET)

ILD Workshop, DESY-Zeuthen, 14–16 Jan. 2008

Effect of adding the SET

Comparison of modification variant 1 with basic setup

ILD Workshop, DESY-Zeuthen, 14–16 Jan. 2008

Modifications, variant 2: remove the silicon inner tracker (SIT)

Description	Inner t	racker
Name	SIT1	SIT2
R [mm]	150	290
z _{max} [mm]	200	390
z _{min} [mm]	-200	-390
Stereo angle	0°/10°	Q°/10°
d [X ₀]	0.0175	0.0175
Pitch [µm]	50/50	50/50
Remarks	strips	strips

New LDC optimization studies ...

Modifications, variant 2: remove the silicon inner tracker (SIT)

ILD Workshop, DESY-Zeuthen, 14–16 Jan. 2008

Effect of removing the SIT Comparison of modification variant 2 with basic setup

ILD Workshop, DESY-Zeuthen, 14–16 Jan. 2008

Remarks on general behaviour

- The momentum resolution improves when approaching the endplate of the TPC (small θ) because of the suppression of the diffusion effect. However, multiple scattering gains a stronger influence.
- In case of pad readout the z dependence is suppressed by the poor performance of the pad pitch.
- The greatest impact of poor resolution has of course been observed for high momentum tracks.

Conclusions on SET (study 1)

- Including the silicon external tracker (SET) improves the momentum resolution over the full angular range. This is of course especially relevant for high momentum.
- As expected, the results show slightly better momentum resolution for tracks near the endplate, where diffusion is less important. Nevertheless, the SET should cover the full length of the TPC.
- For endplates with 2mm pads the SET is a must.
 - Resolution improvements like charge spreading by a resistive foil and calculating the barycenter, are under discussion.

Conclusions on SIT (study 2)

- Removing the silicon inner tracker:
 - At 5 GeV the information gain of the SIT and the information loss due to multiple scattering compensate.
 - Simulation at 25 GeV shows clearly that the information obtained from the SIT is missing.
 - This is less obvious for optimal resolution at the endplate (GEM), but for poor resolution (2mm pads) this is crucial.

DETECTOR DESCRIPTION FOR FAST SIMULATION

- Parallel to full detector description, define a basic detector description, limited to cylinders in the barrel and planes in the forward region.
- It should serve as a starting point for local detector studies of the trackers.
- Without agreement on a common starting version results of different detector optimization studies will never be comparable.
- Increases productivity and yields useful and comparable results, which may subsequently be refined by full simulation.
- The studies shown above can be reproduced within a few hours! For a demonstration please contact the authors.

ILD basic detector description

	V	'ertex D	etecto	r (VTX	()		
Radius							
z _{min} / z _{max}							
$\Phi_{\sf min}$ / $\Phi_{\sf max}$							
Efficiency R Φ / z							
Stereo angle							
Xlen							
Pixels, Strips							
Errors RΦ / z							
function $\sigma(\theta,\beta)$							
function σ (clustersize)							

Silicon Inner Tracker (SIT)

			/		
Radius					
z _{min} / z _{max}					
Φ_{min} / Φ_{max}					
Efficiency R Φ / z					
Stereo angle					
Xlen					
Pixels, Strips					
Errors R					
function $\sigma(\theta,\beta)$					
function σ (clustersize)					

 $\sigma = \sqrt{(\sigma_1^2 + \Delta z[m]^* \sigma_2^2)}$ Time Projection Chamber (TPC)

# layers	R _{min}	R _{max}	Zmin	Zmax	Eff. RΦ	Eff. z	Xlen (per layer)	σ ₁ (RΦ)	σ ₁ (z)	$\sigma_2(R\Phi)$	σ ₂ (Ζ)

Silicon External Tracker (SET, cylinder approximation)

Radius					
z _{min} / z _{max}					
$\Phi_{\sf min}$ / $\Phi_{\sf max}$					
Efficiency R Φ / z					
Stereo angle					
Xlen					
Pixels, Strips					
Errors R					
function $\sigma(\theta,\beta)$					
function σ (clustersize)					

Passive scatterers and support structures - barrel region

Radius					
z _{min} / z _{max}					
Φ_{min} / Φ_{max} (VTX)					
Xlen					

Definition of fwd/bwd coordinates:

Forward Layers

z position					
R _{min} / R _{max}					
Φ_{min} / Φ_{max}					
Efficiency u / v					
Coord. angle δ_1 / δ_2					
Xlen					
Pixels, Strips					
Errors u / v					
function $\sigma(\theta,\beta)$					
function σ (clustersize)					

Backward Layers

z position					
R _{min} / R _{max}					
$\Phi_{\sf min}$ / $\Phi_{\sf max}$					
Efficiency u / v					
Coord. angle δ_1 / δ_2					
Xlen					
Pixels, Strips					
Errors u / v					
function $\sigma(\theta,\beta)$					
function σ (clustersize)					

Passive scatterers and support structures – fwd/bwd region

z position					
R _{min} / R _{max}					
Xlen					

Mini workshop in Vienna?

- Suggest to set up a small ad-hoc working group (a few key persons) for LDC/ILD optimization, based on fast simulation.
- Goal: agree on a basic detector description.
- Invitation to an OPTIMIZATION "brainstorming jamboree" in Vienna (2-3 days in February or March 2008).

LiC Detector Toy on the web

http://stop.itp.tuwien.ac.at/websvn/

=> lictoy

Acknowledgements

The software was designed and developed by the Vienna ILC Project Group in response to encouragement from the SiLC R&D Project. Efficient helix tracking was actively supported by *W. Mitaroff.* Special thanks are due to *R. Frühwirth* for the Kalman filter algorithms used in the program.