$ZH \Rightarrow l^+ l^- X$ Analysis

W.Lohmann, M.Ohlerich, A. Schaelicke, A.Raspereza ILD Optimization Meeting, Zeuthen 16/01/2007

Introduction

At ILC Higgs boson can be detected independent of its decay mode, even if it decays into invisible particles

ILC "golden" channel : $ZH \rightarrow$ (ee, $\mu\mu$)X

Peak in (ee,µµ) recoil mass spectrum

⇒ model independent extraction of *HZZ* coupling $\sigma(ZH) \propto g^2_{HZZ}$

Previous studies with fast simulation must be revisited with full simulation & reconstruction

- Benchmark for tracking performance

P.Garcia-Abia, W.Lohmann

Optimal Energy for ZH Study

- F.Richard, P.Bambade [hep-ph/0703173] Optimal energy to study $ZH \rightarrow ll X$ channel : slightly above threshold
- Higher ZH cross section
- Softer leptons (compared to higher energies)
 - better momentum reconstruction ($\delta p \propto p^2$)
 - ⇒ better resolution on recoil mass

Assumed Experimental Conditions and Event Samples

- Light Higgs: $m_{_{\rm H}} = 120 \text{GeV}$
- $\sqrt{s} = 250 \text{GeV}$, L=50 fb⁻¹
- Generated samples

 $\begin{array}{l} - \operatorname{ZH} \to e^{+}e^{-} \operatorname{X}, \ \mu^{+}\mu^{-} \operatorname{X} &: \operatorname{PYTHIA} \\ - e^{+}e^{-} \to \ \mu^{+}\mu^{-}, \tau^{+}\tau^{-} &: \operatorname{PYTHIA} \\ - e^{+}e^{-} \to \ e^{+}e^{-} &: \operatorname{BHWIDE} \ (t+s \ channels) \\ - \operatorname{WW} \to \ e\operatorname{X}, \ \mu\operatorname{X}, \ e\mu\operatorname{X} &: \operatorname{PYTHIA} \\ - e^{+}e^{-} \to \ e^{+}e^{-} \overline{\mathrm{ff}}, \ \mu^{+}\mu^{-} \overline{\mathrm{ff}} &: \operatorname{SHERPA} \end{array}$

- Generated bkgd samples correspond to L=50 fb⁻¹, signal samples – L=500 fb⁻¹

Analysis Chain

Software for ILC / LDC (LDC01Sc Mokka model)

Tracking Issues

- Full LDC Tracking system VTX+FTD+SIT+TPC
- Digitization of SimTrackerHits : Gaussian smearing
 - VTX : $\sigma_{r\phi} = \sigma_z = 4\mu m$
 - FTD : $\sigma_x = \sigma_y = 10 \mu m$
 - SIT : $\sigma_{r\phi} = \sigma_z = 10 \mu m$
 - TPC : $\sigma_{r\phi}^2 = \sigma_o^2 + D^2 \cdot L_{drift}$ $\sigma_o = 55 \mu m$ $D^2 = 10 \mu m$ $\sigma_z = 0.5 mm$
- Tracking is done with FullLDCTracking processor
 - Tracking efficiency for leptons from Z decay > 99%
 - $\delta(1/p_T) < 7 \cdot 10^{-4}$ (central region)
 - $\delta(1/p_T) \approx 10^{-3}$ (forward region)

Dilepton Invariant Mass Reconstruction

- Momentum reconstruction of electron track is strongly affected by bremsstrahlung
- ⇒ underestimation of e momentum results in a long tail @ lower side of di-electron mass spectrum

Particle Identification

- Based solely on information from calorimeter
- Input : pdf's of the cluster shape variables, discriminating between e, μ and π
- cluster shape variable pdf's \Rightarrow likelihoods for the three hypotheses [e, μ and π]
 - $L(e)+L(\mu)+L(\pi)=1$
- Highest likelihood defines particle ID

Particle ID Performance

likelihood

Analysis Strategy

- Loose preselection
 - two isolated leptons $e^+e^- \mu^+\mu^-$
 - $|\cos\theta_{lep}| < 0.95$, $E_{lep} > 15 \text{GeV}$
 - $|m_{di-lep} m_{Z}|$ <30GeV, 90GeV $\leq m_{recoil} \leq$ 190GeV
- Likelihood construction
 - Input variables : acoplanarity , acollinearity , m_{di-lep} , $\cos\theta_{lep}$, $\cos\theta_{di-lep}$, $P_{T, di-lep}$
- Optimized cut on the signal likelihood
- Analysis of the recoil mass spectrum \Rightarrow determination of $\sigma(e^+e^-\rightarrow ZH)$ and $m_{_{\rm H}}$

Example of Input Variables in Signal Likelihood

Optimizing Cut on Likelihood

Likelihood classes: 1 Signal class, several BG classes

Likelihood cut optimized by minimizing $\ensuremath{\,\sqrt{S+B}}$ in the signal mass window

Extracting Mass and Cross Section

<u>Cross section</u>

- Fit of mass spectrum
- Parameters, defining the shape of the signal distribution are fixed
- free fit parameters : $m_{_{\rm H}}$ and Norm

e-channel : $\sigma(ZH) = 216 \pm 43$ fb μ -channel : $\sigma(ZH) = 220 \pm 22$ fb both compatible with 227 fb from PYTHIA

- <u>Mass determination</u>
 - Signal samples with m_H=[119,121] GeV generated and processed through full analysis chain
 - Resulting mass spectra parameterised
 - Obtained parameterization \Rightarrow unbinned likelihood fit $\Rightarrow m_{_{\rm H}}$

e-channel : $m_{_{\rm H}} = 119.78 \pm 0.42 \text{ GeV}$ μ -channel : $m_{_{\rm H}} = 120.09 \pm 0.12 \text{ GeV}$

Summary

- $ZH \rightarrow l^+ l^- X$ analysis performed, including
 - full simulation (Mokka)
 - realistic reconstruction (MarlinReco)
 - All relevant background processes
- $\delta\sigma/\sigma = 9\%$, $\delta m_{_{\rm H}} = 120$ MeV with 50 fb⁻¹ at 250 GeV (10 times more statistics needed to reach similar accuracy at 350 GeV)
- Particle ID Marlin processor developed as a byproduct of the analysis
- Analysis code complies with Marlin framework and can be used for the ILD detector performance & optimization studies