• SiLC optimization tools/plans

SiLC optimization tools/plans

1

Marcel Vos – IFIC Valencia

for the SiLC collaboration

thanks to V. Saveliev, A. Savoy-Navarro

Valeri Saveliev, Obninsk State University, Russia Juha Kalliospuska, HIP and VTT, Helsinki, Finland Wilfrid Da Silva, Frederic Kapusta, LPNHE Paris, France Zbynek Drasal, Charles University, Prague, Czech republic Bruce Schumm and collaborators, UCSC – Scipp, USA Winfried Mitaroff, Meinhard Regler, Manfred Valentan, HEPHY Vienna, Austria Ivan Vila, IFCA Santander, Spain Marcel Vos (coordinator), Carlos Mariñas, IFIC Valencia, Spain Korean Group (GLD)

Inner silicon: Mokka implementation SIT

SITMat = CGAGeometryManager::GetMaterial("silicon_2.33gccm");

Silicon Intermediate Tracker (SIT) 0.5 % X₀ (300 μm silicon + C support)

New SIT implementation by Valeri Saveliev (essentially a follow-up of Hengne Li's work)

Inner silicon: Mokka implementation.

phpMyAdmin

Database

E common parameters

ftd02 (2)

ftd02 (2)

🗏 disk

Forward Tracking Disks (FID) **B pixel d**isks (1 % X₀) 4 strip disks (0.5 % X_o) extended layout wrt TESLA

SQL query

Query results operations

Print view Service (with full texts)

Export

Ĕ

•					
	Field_name	Min_value	Max_value	Min_length	Max_length
	ftd02.disk.disk_number	1	7	1	1
	ftd02.disk.z_position	220	1900	3	4
	ftd02.disk.inner_radious	29	113	2	3
	ftd02.disk.outer_radious	140	290	3	3
	4			5. II IV. V G	

• **ETD** Mokka implementation

End-cap tracking disks Silicon – carbon – silicon sandwich

• **ETD** Mokka implementation

Silicon Envelope Tracker Silicon + carbon support

Digitization

CSIC

IFIC

ILC Software – Basics

- · Baseline sofware:
 - Mokka: Geant 4 based, full simulation tool using a realistic detector geometry available via a MySQL database; to access the database and construct the detector geometry the C++ driver is needed; output in ASCII or LCIO file
 - LCIO: Linear Collider I/O framework, which defines a data model for ILC; as a concrete data format an implementation of Serial Input/Output (SIO) is used → output in *.slcio files
 - Gear: geometry description toolkit for ILC analysis and reconstruction software; when specified in Mokka the geometry *.xml file is created; the file contains simplified detector geometry (testbeam geometry ...)
 - Marlin: ILC Modular Analysis & Reconstruction tool; enables modular approach to development of reconstruction and analysis code based on LCIO; data in LCIO format are processed using so-called processors; processor parameters set via a steering file; (digitization package represents one of Marlin processors)

Zbynek Drasal, SiLC meeting, Torino, December 2007

Marcel Vos, Torino, Dec. 2007

Digitization

SiStripDigi Package - Introduction

Strip detector digitization

CSIC

Ĕ

Zbynek Drasal, SiLC meeting, Torino, December 2007

- steps = 25 μm (50 μm ~ 2x faster)
 - calculated manually from Geant4 hits
- E_{eb} = 3.65 eV (energy for an e-h pair creation)
- physical processes:

8

- Drift in el. field (4th order Runge-Kutta method or Predictor – Corrector method)
- Diffusion (smear position with Gauss distribution)
- Lorentz shift in magnet. field (Romberg numerical integration method)
 - "η correction" (crosstalk included AC or DC)
 - Electronics and noise added

Marcel Vos, Torino, Dec. 2007

Sub-Detector Parameter GLD LDC GLD' LDC' TPC R _{inner} (m) 0.45 0.30 0.45 0.30 Router (m) 2.00 1.58 1.80 1.80 Zmax (m)* 2.50 2.16 2.35 2.35 Barrel ECAL R _{inner} (m)** 2.10 1.60 1.85 1.82 Material Sci/W Si/W Sci/W Sci/W Sci/W Barrel HCAL Material Sci/W Sci/Fe Sci/Fe Sci/Fe Endcap ECAL Zmin (m)*** 2.80 2.30 2.55 2.55	LDCPrime					
Sub-Detector Parameter GLD LDC GLD' LDC' TPC Rinner (m) 0.45 0.30 0.45 0.30 Router (m) 2.00 1.58 1.80 1.80 Zmax (m)* 2.50 2.16 2.35 2.35 Barrel ECAL Rinner (m)** 2.10 1.60 1.85 1.82 Barrel HCAL Material Sci/W Sci/W Sci/W Sci/Fe Sci/Fe				\frown		
TPC Rinner (m) 0.45 0.30 0.45 0.30 Router (m) 2.00 1.58 1.80 1.80 1.80 Couter (m) 2.00 1.58 1.80 1.80 1.80 Barrel ECAL Rinner (m)** 2.10 1.60 2.35 2.35 Barrel HCAL Material Sci/W Sci/W Sci/W Sci/W Sci/Fe	Sub-Detector	Parameter	GLD	LDC	GLD'	LDC'
R _{outer} (m) 2.00 1.58 1.80 1.80 Z _{max} (m)* 2.50 2.16 2.35 2.35 2.35 Barrel ECAL R _{inner} (m)** 2.10 1.60 1 85 1.82 Barrel HCAL Material Sci/W Sci/W Sci/Fe 5 5 Sci/Fe 5	ТРС	R _{inner} (m)	0.45	0.30	0.45	0.30
Z _{max} (m)* 2.50 2.16 2.35 2.35 Barrel ECAL R _{inner} (m)** 2.10 1.60 1.85 1.82 Material Sci/W Si/W Sci/W		R _{outer} (m)	2.00	1.58	1.80	1.80
Barrel ECAL Rinner (m)** 2.10 1.60 1.85 1.82 Material Sci/W Si/W Sci/W		Z _{max} (m)*	2.50	2.16	2.35	2.35
MaterialSci/WSi/WSci/WSci/WBarrel HCALMaterialSci/WSci/FeSci/FeSci/FeEndcap ECALZmin (m)***2.802.302.552.55SolonoidBefield3.04.03.503.50	Barrel ECAL	R _{inner} (m)**	2.10	1.60	1.85	1.82
Barrel HCALMaterialSci/WSci/FeSci/FeSci/FeEndcap ECAL Z_{min} (m)***2.802.302.552.55SolenoidB-field3.04.03.503.50		Material	Sci/W	Si/W	Sci/W	Sci/W
Endcap ECAL Z _{min} (m)*** 2.80 2.30 2.55 2.55 Solenoid B-field 3.0 4.0 3.5	Barrel HCAL	Material	Sci/W	Sci/Fe	Sci/Fe	Sci/Fe
Solenoid B field 3.0 4.0 3.50 3.50	Endcap ECAL	Z _{min} (m)***	2.80	2.30	2.55	2.55
B-field 5.0 4.0 5.50 5.50	Solenoid	B-field	3.0	4.0	3.50	3.50
VTX Inner Layer (mm) 20 16 18 18	VTX	Inner Layer (mm)	20	16	18	18

From Frank Gaede, December 6th.

Convergence for detector parameters linked to B or R. TPC inner radius or innermost silicon unchanged in "Primed" layouts

Silicon tracker parameters for optimization

The questions we would like to see answered in the next year(s)

Parameter	Affects	Changed in	LDC/GLD differences
Material	Overall performance, PatRec	Mokka description	All
Number of layers	All aspects	Mokka description	SIT, ETD
Layout	Momentum resolution	Mokka description	FTD
Rø resolution	Momentum resolution	Digitizer	FTD, ETD
R/z segmentation	Pattern recognition	Digitizer	SIT, FTD

Given limited time/resources, concentrate on tracker material, a key parameter in the global detector performance

Comparison of physics impact of optimistic/pessimistic scenarios for material in SIT/FTD, integrated scenarios for TPC endplate material (ETD), VXD services (FTD)

Other parameters: small-scale dedicated productions could be very interesting.

Forward tracking: interplay with TPC

(Very) forward tracking in a gaseous + silicon tracker

For track polar angles below 40° reduced TPC coverage Below $\sim 30^{\circ}$ FTD starts to contribute Below $\sim 20^{\circ}$ FTD dominates the measurements

TPC/FTD hits vs. polar angle Large Detector Concept (Tesla layout of FTD)

Forward tracking: interplay with VXD

	Magnetic	Angular Coverage		
Concept	Field	5-point	3-point	
SiD	5 T	12.5 (43 barrel)	9	
LDC	4 T	26	19	
GLD	3T	26 (6 points)	18 (4 barrel + 2 disk)	

Long barrel layout (LDC, GLD) has limited coverage for angular region from 7° to 25°

(Very) forward tracking with a "Long barrel" vertex detector

12

LDC inner tracker layout:

VXD (cylinders) SIT (green) FTD disk 1 and 2

CMS Kalman filter tool-kit.

The result of years of work by a lot of people. Validated in large-scale MC productions.

Extracted all relevant code in a series of libraries with limited external dependencies (CLHEP, ROOT).

Interfaced to toy geometries in standalone programme. Tested results for internal consistency and against existing fast-simulation packages.

Interfaced to MarlinReco (GEAR geometry, LCIO hits)

LCDTRK vs. KF: Transverse impact parameter resolution vs p_T

Momentum resolution

Δ(1 /p _τ) @ 10 degrees :	Detector	R φ (μm)	z/R (μm)	Material (% X _o
Reference (TESLA) set-up	VXD	5	5	0.12/layer
Reference (TESLA) Set-up	FTD1-3	10	50	1.2/layer
1.8×10⁻³⊕1.3×10⁻²/ p _⊤	FTD4-7	10	1000	0.8/layer
Challenging setup	TPC	120	300	1 (field cage)

(5 μ m R ϕ resolution, 1.2 ‰ X0/disk for FTD1-3, 4 ‰ X0/disk for FTD4-7)

 $\Delta(1/p_T) = 0.9 \times 10^{-3} \oplus 0.8 \times 10^{-2} / p_T$

In the very forward tracker the momentum resolution ($\Delta(1/p_T)$) is inevitably degraded by the less favourable orientation of the B-field

Excellent instrumentation allows to regain part of the lost performance: with a combination of a very challenging material budget and very good $R\phi$ resolution a factor two improvement is achieved throughout the momentum range.

Vertexing with forward tracks

16

Marcel Vos, IFIC Valencia

Vertexing with forward tracks

For very forward tracks (< 12°) the innermost measurement is

provided by Forward Tracking Disks.

d_o resolution well below the ct of B-hadrons possible, provided:

- very little material in/before first tracking disk,
- excellent R f resolution,

smallest possible z-distance first disk.

Region V	σ (d0) @ 50 GeV	σ (d0) @ 1 GeV
θ = 10 degrees	(μm)	(µm)
Reference geometry	20	120
FTD material = 1.2 % X0	21	290
$R \phi$ resolution = 5 μm	12	104
Z (FTD1) = 15 cm	17	82

Reference geometry: "long barrel" VXD with 5 μm resolution and 0.12 % $X_{_0}$ material and LDC FTD with 10 μm resolution and 0.12 % $X_{_0}$ material

Combinatorial algorithm based on KF kit

The baseline algorithm of the ATLAS (arXiv:0707:3071) and CMS (NIM A 559 143) experiments

Standalone FTD reconstruction implemented in MarlinReco processor

Run on tt events with superposed pair background.

Reference FTD (TESLA layout) 10 μ m R- ϕ resolution 1.2 % X₀/disk (1-3) and 0.8 % X₀/disk (4-7). Several scenarios for R-resolution, from pixel to single-sided strip.

Pattern recognition

Marcel Vos, IFIC Valencia

Low momentum tracks are a r 27.4 challenge!

The stand-alone FTD is able to resolve patterns down to a p_T of 100 MeV, provided:

R-segmentation: in innermost disks $< 500 \mu$ m, in outermost disks O(1cm)

Read-out speed: beyond O(10) bunch crossings the density of low momentum tracks prevents algorithm convergence

Material: an increase of the material beyond 1%/disk has dramatic consequences on pattern recognition

Forward tracking: challenges

Forward Tracking disks must provide:

- superb momentum resolution in unfavourable field orientation
- impact parameter measurement for very forward tracks

- standalone pattern recognition in presence of background and low momentum tracks
- minimal distortion of particles

Drivers for SIT, FTD, SET and ETD have been provided

Many silicon tracker parameters to be optimized for ILD, concentrate on the global performance impact of tracker material

SiLC simulation task force committed to actively participate in ILD optimization

