

CALL Calorimeter for ILC

Scintillator HCAL Optimization

Felix Sefkow

ILD Meeting at DESY, Zeuthen January 15, 2008

Outline

- Status of R&D
- Open R&D and technological issues
- · Open questions for optimization

Test beam experience

- Established the scintillator SiPM technology on large scale (7608 SiPMs)
 - Robust and stable operation, 95% up-time, 1.6% dead channels (mostly solder)
 - Noise occupancy 10^{-3} as expected, 0.8 MIP = 25 MeV / hit
 - Imaging capability nicely demonstrated, millions of events collected

HCAL main meeting 19.12.2007

Analysis potential: electrons

10⁻¹

10-2

35

- Electromagnetic showers:
- Verify detector model and calibration procedures
- Muons: see N. D'Ascnezo's talk

Resolution

Data e, HCAL 15 layers

Scintillator HCAL

5% pixel and 3% mip uncertainty

MC TBCern0806_01 + digitization

Data 45 GeV e, HCAL 15 layers MC TBCern0806 01 + digitization

13

Electromagnetic Shower Analysis

Analysis potential: hadrons

Verify shower simulation models

Also on tape: tagged protons

Analysis potential: correlations

- Ideas V.Morgunov, first steps M. Groll (PhD thesis)
- Shower decomposition, using energy and topology

Energy dependence, correlation Starting point for weighting techniques

Novel quality of input to shower model development

Analysis potential: two hadrons

- Thanks to low occupancy, can use "event mixing" techniques
- Measure the confusion term
 - Non-associated fragments \rightarrow double counting
 - Wrong assignments

- → losses
- As a function of particle separation in data and MC

Number of cluster found nCluster **Entries** 1.968 Mean 0.3093 Ongoing thesis work (J. Samson) RMS 600

Towards benchmarking the PFLOW performance

And more:

ECAL, HCAL and TCMT combined

- Semi-digital approach
 - 2 bits, 3 thresholds
- Calibration strategies
 - Auto-calibration concept

- SiPM response stability

Next: technical prototype

- Goal: A compact and realistic (i.e. scaleable) scintillator HCAL structure with embedded electronics
- Integration issues
 - Readout architecture
 - Ultra-low power ASICs
 - Calibration system
 - Tile and SiPM integration
 - Absorber mechanics with minimal cracks
- Feed-back from test beam essential
 - Calibration concept
 - Overall detector optimization

R/o layer design progress

Modular design, thin gap (scint + 1.6mm), embedded LEDs

If gain calibration sufficientsmall intensities

Felix Sefkow ILD Meeting at DESY, Zeuthen, January 15, 2008

New ASIC on the test benches

- Auto-triggering and time measurements
- ADC and TDC integrated
- Power pulsing, low (continuous) power DAC

Mechanical design: to start

- TESLA TDR: rather detailed design with "no" cracks
- Questions raised on stability with realistic tolerances, assembly sequence
- Started to re-evaluate
- No alternative designs yet
- No mechanical design for Pb or W structures

R&D issues

Musts

- Operation with on-line zero suppression
 - e.g. threshold setting and monitoring for auto-trigger FEE
- Calibration and monitoring
 - monitoring with auto-(gain-) calibration alone (or not)
 - mip calibration with hadronic showers (or r/a souces)

Technolgy driven Guidance helpful

Wishes

- SiPMs with lower noise, larger efficiency and dynamic range
- Scintillator tile systems, thin and with direct coupling
 - light yield, uniformity
- · Optimization of electronics analogue performance
 - better s/n for low gain SiPM and gain calib robustness
- Timing: synchronization and stability

Technological issues

- Finalize technological prototype design
 - mechanics, electronics interfaces
 - FEE digital data handling (indiv. channel triggering and addressing)
- · Mass production QC and characterization sequence
- · Electro-mechanical system integration

Guidance helpful

- Absorber mechanical structure with thin cracks
- Service integration
- End cap layout
- Mechanical design for other absorber materials (Pb, W)

Waiting for input from optimization studies

Optimization

- All this needs to be done, independent on the exact parameters of the detector we want to build
- · We thought we know these to good approximation thanks to
 - Studies done for the TESLA TDR
 - Intuition of the experienced
 - The granularity studies performed by A.Raspereza and M.Thompson
 - · And V.Zutshi for the semi-digital approach
- · Our GLD friends thought so, too
- Similar, but also new and different ideas
 - Lead absorber, compensation
 - Scintillator strips
 - Timing for particle flow
- ILD optimization: time for re-assessment

General

- Basic understanding of energy resolution
 - Studies on "ideal PFLOW" were extremely instructive
 - Need the same for the high energy limit (classical calorimetry)
 - Would like to further break down the hadronic energy measurement
 - role of sampling statistics, e/pi fluctuations
 - mip efficiency, (thresholds)
 - Leakage and dead materi
- Radiation exposure revisited
 - Occupancy (electronic bandwidth)
 - Rates and damage
 - Possible impact on technology choice close beam line

Absorber material

- Iron preferred for mechanical reasons
 - Additional support structure increases dead material
- Lead offers compensation and more compact shower core
- Need to adapt segmentation (?)
 - Scale long./ transv, both, none with XO
- Muon cut-off will be significantly higher
 - Physics impact

- Tungsten gives more hadronic interaction depth
 - also Gold, Platinum,...
- Does anyone remember why we do not consider Uranium?

Geometry

- Depth
 - Earlier pointed out by V.Morgunov
 - Recently affirmed by M. Thomson
 - May be not the final word
- Understand and control leakage
 - No use of tail catcher in reco yet
 TB data!
 - PFLOW approach: Estimate leakage from shower shape, starting point (Thesis B.

- Cracks
 - Motivate engineering effort
 - Effect of phi cracks, edge tiles
 - Benefits from non-pointing geometry
- Barrel end-cap transition, endcap (!) ring
- Angular coverage:
 - interplay with FCAL, FHCAL
- Is enough attention paid to missing energy performance?

Suggestion: compare aggressive and conservative design options
Needs engineer input to start the loop

Longitudinal sampling

- 2 cm steel absorber plates: does not sound like a natural unit
 - Vary up and down
- Scintillator thickness
 - Under pressure from coil volume and hadronic interaction depth
 - Compromises in light yield (s/n)
- Lose in sampling statistics
- Proposal: compare 3mm and 5mm
 - Invest thicknees budget into
 - · More layers, same sampling
 - Thicker absorber plates

New 3 cm ties from ITEP

ECAL HCAL transition

- Given good em resolution of scintillator HCAL
- And possibility to refine granularity further:
- How much Si tungsten is needed?
 - impact on em resolution
 - em shower separation
 - had shower separation
- Proposal: try a thinner ECAL and finer segmentation in first 10 HCAL layers

Transverse segmentation

- Reduction with depth
 - Still on the agenda
 - Proposal: 6x6 from last 10 or 20 layers
- Strips
 - Better position resolution for same channel count
 - Potential degradation of pattern recognition due to ghost hits
 - Results from GLD at this work-shop
 - Possibility to adapt Pandora?

Timing for PFLOW

- Use time measurements to tag neutron hits
 - Clean up picture for PFLOW reconstruction \rightarrow cut at 5 ns
 - Keep late hits for energy resolution → gate open for full bx
- Neutrons: blessing or curse?
- Proposal: study benefits in state-ofthe art PFLOW
- Check model dependence
 - Can test beam tell?

Showers with timing cut

 Effect is stronger for Pb

Electronics

- We need robust numbers on Occupancy
 - from physics
 - from beam related background
 - (from noise)
- · For band width considerations
- Electronics effects of PFLOW pwrformance
 - Noise impact on energy resolution and pattern recognition
 - MIP efficiency, threshold effects
 - Time resolution
- Dynamic range of SiPMs
 - Proposal: compare two options, different range, same accuracy of corrections

Calibration

- Impact of calibration uncertainties
 - statistical limitations (number of mips will be small)
 - Systematic (temperature effects)
 - dynamic range
 - threshold dispersion
 - timing offsets
- Calibration methods
 - MIPs in showers: to be demonstrated
 - Absolute scale
 - Total energy, single hadrons; systematics?
- Goal: Realistic estimate of stoch/const/noise term

Summary

- A rich program for h/w and s/w studies
- For the ILD LOI, need to prioritize
 - driven by sequence of decisions for engineering desin
- 1st absorber material (Fe, Pb)
- 2nd depth and cracks (l;eakage with PFLOW)
- 3rd longitudinal sampling (3 or 5 mm scintillator/)
- 4th granularity: strips vs tiles on same footing
- 5th impact of timing
- In parallel: general understanding & calib issues
- Use full detector simulation AND test beam data

SiPM scintillator coupling

- More efficient SiPMs:
- simpler coupling, thinner tiles

Uniformity to be

re-addressed, not

Back-up slides

Integrated layer design

