Electron Reconstruction Study of LDC01Sc Model (Based on FullLDCTracking and PandoraPFA)

Hengne Li, Roman Pöschl Groupe ILC, LAL BP34, 91898 Orsay, France

OUTLINE

- Objective and Work Flow
- Simulation / Data Samples
- FullLDCTracking
- PandoraPFA Clustering and PFA
- Cut Based Electron Identification
- Conclusion / Outlook

Objective and Work Flow

Objective:

 Provide good electron data sample for Higgs Recoil Mass Study (ee->ZH->eeX)

Work Flow

Simulation / Data Samples

Simulation

- Mokka,
- LDC01Sc Model, with Sit01 (instead of Sit00)
- Particle Gun,

Data Samples

- e-, mu-, pi-
- 10GeV, 30GeV, 50GeV, 70GeV, 90GeV
- θ Uniform Smearing:
 - Barrel Only: $\cos(\theta) \in (0, 0.819)$; avoiding FTD
 - Barrel+Endcap: $cos(\theta) \in (0, 1)$
- 1000 Events Each

Bremsstrahlung Effect

Decreasing the quality and efficiency of electron tracking

Results for 30 GeV Electrons

□ resolution of 1/P, ϕ and θ achieved 5.8x10⁻⁵ (1/GeV), 6.59x10⁻⁵ (rad) and 4.39x10⁻⁵(rad), respectively.

- Resolution
 - □ e.g. E > 30 GeV, Barrel
 - $\sigma(1/P) < 6x10^{-5} (1/GeV)$
 - $\sigma(\theta) < 0.05 \text{ mrad}$
 - $\sigma(\phi) < 0.07$ mred

- Fraction of electrons with at least one correctly Linked LDCTracks
 - □ Barrel Only : ~95%
- Never mean not linked is not good!

Discussion

- Because of bremsstrahlung, more LDCTracks reconstructed than the number of initial electrons.
- e.g. for 1000 electrons with momentum of 30 GeV, barrel region
 - 1072 LDCTracks reconstructed
 - 934 electrons with only one LDCTrack (which is correctly linked)
 - remaining 138 LDCTracks belong to the remaining 65 electrons.
 - Mostly, (~53 electrons), due to SiTracks and TPCTracks cannot be linked together by Kalman Filter after photon radiated
 - rarely, (~9 electrons), due to more than one TPCTracks reconstructed in case that photon radiated within TPC,
 - More rarely, (~3 electrons), due to the conversion of radiated photon into a electron/positron pair.

Clustering and PFA Quality

Results for 30GeV Electrons

Energy Resolution and Efficiency

- Resolution
 - Barrel Only: $\alpha = 17.6\%$
 - Barrel+Endcap: α =19.3%

- Definition of Efficiency and Rejection Rate
 - Efficiency: $Eff = N_{\text{Electrons Identified}} / N_{\text{Electron PFOs from PFA}}$
 - □ Rejection Rate: $Rej = 1 N_{Mis-Identified} / N_{Background PFOs from PFA}$
- Efficiency and Rejection Rate for particular Identification Variable
 - EPratio Only (for only Barrel Region)

 Muons are totally rejected with only Epratio variable.

- Rp Only: (for Barrel Region Only)
 - Since muons are totally rejected by EPratio
 - Fix the Rp lower cut of 7 mm, adjust upper cut for optimization

Efficiency

0.98

0.96

0.94

10 GeV

30 GeV

▲ 50 GeV

• Overall Efficiencies and Rejection Rates of Different Cut Scenarios

Cut Scenarios: 1 to 6, looser to tighter (or softer to harder)

Cut Scenario	1	2	3	4	5	6
Epratio	0.6	0.65	0.7	0.75	0.8	0.85
Efrac	0.96	0.96	0.97	0.97	0.98	0.98
Rp	51	49	47	45	43	41

For Barrel Only

Cut Based Electron Identification Overall Efficiencies and Rejection Rates (continue) For Barrel Only

- e.g. For ee->ZH->eeX ,
 - di-electron momentum mainly within 20 70 GeV
 - Cut Scenario2 and Cut Scenario3 are suitable:
 - Efficiency > 99.5 %;
 - Rejection Rate for pions
 - □ E of > 30 GeV: > 98%
 - □ E of 10 to 30 GeV: > 95%

Conclusion and Outlook

During this analysis:

- FullLDCTracking performance : good! :D
- PandoraPFA perfomance: good! :D
- Electron Identification Object achieved
 - Efficiency > 99.5%; Rejection Rate for pion > 98%*
 - EID cuts optimization for physics study is on going
 - Likelihood implementation is on going
- Bremsstrahlung: most painful nature of electrons
 - Tracking should be improved or optimized for electrons

^{*} For Barrel, pion Energy > 30 GeV,

Backup Slides

* For Barrel, 30 to 70 GeV,

Overall Efficiencies and Rejection Rates (continue) For Barrel Only

Optimization of Cuts

- Define Optimization Factor as:
- reflects the efficiency and rejection rate together, and respects to different background rate of different physics channel to be studied.

$$F_{opt} = (f_e Eff + f_b Rej)/(f_e + f_b),$$

where f_e is the fraction of final state electrons, f_b is the fraction of final state background particles

- Cut Optimization (continue)
 - e.g. assume fe = fb

For Barrel Only

e.g. For ee->ZH->eeX,

- di-electron momentum mainly within 20 70 GeV
- Cut2 and Cut3 are suitable:
 - Eff > 99.5 %; Rej ~ 99.0%

- Cut Optimization (continue)
 - e.g. assume fe = fb

For Barrel Only

e.g. For ee->ZH->eeX,

- di-electron momentum mainly within 20 70 GeV
- Cut2 and Cut3 are suitable:
 - Eff > 99.5 %; Rej ~ 99.0%