

Lucretia Developments

PT SLAC

27-Nov-2007 SLAC-ILC-AP Meeting **Global Design Effort**

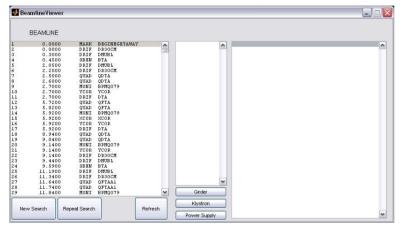
1

Remind me – what's Lucretia?

- A Matlab-based toolkit for simulations of beam dynamics in single-pass electron beamlines
 - Most components are Matlab scripts or functions
 - A handful of compiled C functions which run under Matlab ("mexfiles"
 - Compute intensive activities like tracking
 - Tracks pointlike rays with user-defined charge, not 4-D macroparticles
 - R-matrix calculation, Twiss propagation, lattice verification
 - Share a lot of code with Tracking
- Designed with the ILC in mind
 - Somewhat useful for other applications LCLS, XFEL
 - Designed from the ground up to be an all-in-one tool for LET studies
 - As "bulletproof" as we can make it
 - Careful memory management
 - Careful error handling
 - Segmentation faults fixed as quickly as possible
 - Runs under Matlab
 - Matlab data (ie, beamline state, etc) preserved even if a fault is detected

İİĹ

Global Design Effort


- Fairly sophisticated beamline representation
 - Includes power supplies, klystrons, girders with or without movers, short range and long range wakefields, incoherent synchrotron radiation (several methods), crab cavities
- Beam representation
 - Multi-bunch representation
 - Several pre-defined distributions of rays, and users can define their own
- Instrumentation
 - Read-out of "observable" and "non-observable" stuff at each instrument
 - Bunch-by-bunch or train-by-train readback
 - BPM resolution and electrical offsets

IIL

Other Lucretia Features

An online manual in the form of a heavily cross-linked website:

http://www.slac.stanford.edu/accel/ilc/codes/Lucretia/

İİL

CVS control via a CVSWEB interface

A GUI for studying the beamline data structures

RenatAstoR

TrackThe VerifyLattice

acretaComm

anti a Director

retro Maila

Stanford Linear	SLAC	Controls Software Eng CVSWEB	incering Group	SLAC Detailed SLAC Computing
Accelerator Center				Controls Software
	/afs	/slac/g/ilc/cvs/I	Lucretia/	
Nick on a directory to enter	that directory. Click on a file	to display its revision hist	ory and to get a chanc	e to display diffs between revisions.
Current directory: III.C-mai	n / <u>Lucretia</u>			
File	Rev.	Age	Author	Last log entry
compiler/				
<u> </u>				
web/				
Dipfiles/				
home-alt.html	<u>1.1.1.1</u>	2 months	whitegr	Imported source
home.html	<u>1.2</u>	2 months	whitegr	test update
Show only files with tag All	tags / default branch 💌 🗔 Go			
	Majordomo list evs-l @slac.stanfe			

27-Nov-2007 SLAC-ILC-AP Meeting

Global Design Effort

- At this point, there are two key features which are missing
 - Insertion devices wigglers and undulators
 - Wraparound elements IR solenoids around other magnets, quads wrapped around accelerating structures, etc.
- Plus at least a couple of other potentially useful features
 - RF kicks from asymmetric couplers
 - Crab cavity LOMs (fundamental mode excitation)

IIL

Insertion Devices

• Needed for e- linac

İİL

- Positron production undulator is seen by the beam which goes to the IP
 - Helical undulator
- Which features are required?
 - Optical effects (fringe field focusing)?
 - Path length change and/or momentum dependence of path length?
 - Mean energy loss?
 - Growth in energy spread?
 - Emittance growth from ISR?
- Can this be "dummied up" with lots of tiny sector bends?
 - Probably hopeless for a ring with an insertion device
 - Maybe okay for single-pass beamline

Wraparound Devices

- An ongoing issue for accelerators in general
- My proposal: add a new FIELDMAP data structure to represent the wraparound element
 - Zero length field maps with integrated E and B fields in an xy grid
 - Cross-referencing between the field maps and the elements they wrap around
 - Field maps can have power supplies, girders, movers
 - Tracking makes use of Matlab interpolation functions to find best approximation of actual field at each ray's location

IL

End of Presentation

• Some questions

IL

- Do we need the insertion device as a true element type, or can we fake it with a mess of sector bends?
- Is the proposed general design of the FIELDMAP data structure, and its use, sensible?
- Are there other important features which should be incorporated in the near future?
 - Not all users are necessarily linear collider people!