Simulation

Aims of CALICE data analysis

- 1) Measure the performance of the prototype calorimeters used in the beam tests
- 2) Compare Monte Carlo models with data to measure the degree of accuracy of the models
- 3) Apply knowledge gained from 2) to optimise the ILC detector calorimeters with a verified, realistic and trustworthy simulation
- 4) Develop calorimeter jet reconstruction algorithms and test them on real data as well as simulation

Simulation Model

- Geant4 as simulation framework
- Simulated output in LCIO format, directly comparable with data
- Support for multiple testbeam installations and whole detector models within common framework
- Support for wide range of physics models
- Accessible for grid production and individual users
- Models adaptable for systematic studies

Objectives

Aim 2) "Compare Monte Carlo models with data to measure the degree of accuracy of the models"

- Requires detailed description of all aspects of multiple testbeam installations
 - Physics models
 - Detector geometry/materials/placement
 - Beam profile
 - Digitisation

Aim 3), "Apply knowledge gained from 2) to optimise the ILC detector calorimeters with a verified, realistic and trustworthy simulation"

- Requires
 - The ILC detector concept models to be implemented to the same level of detail/accuracy which is found necessary to obtain acceptable level of agreement with testbeam data
 - Use of same physics models and parameter tunes
 - Prescription to attribute testbeam data-derived uncertainty to predictions of ILC detector concept studies

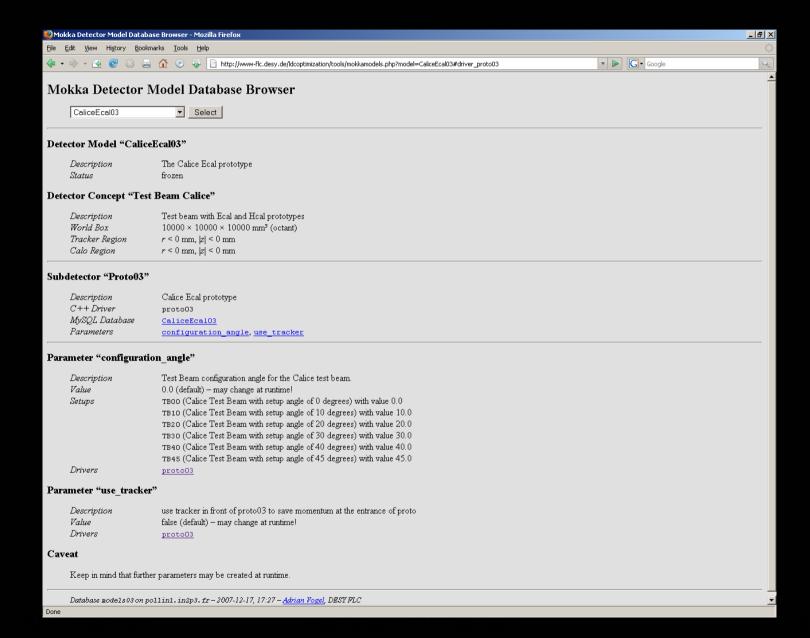
G4 Simulation - Mokka

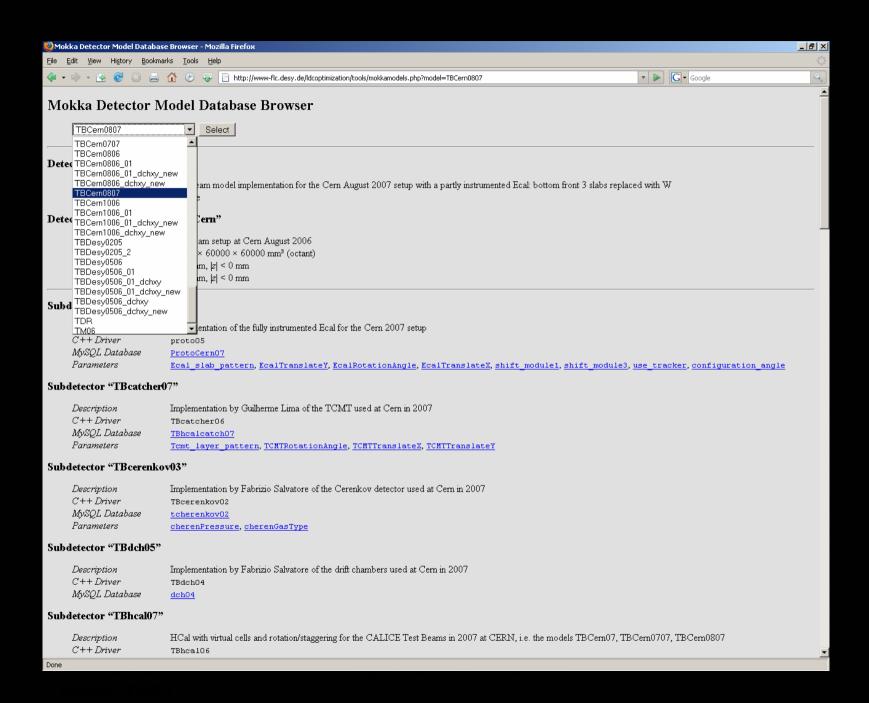
- Fully detailed Geant4 application
 - Run driven by ascii input steering file (e.g. choice of detector model, etc.) and macro file (G4 native and Mokka implemented actions)
 - Wide range of Physics Lists available
 - ⇒OK, in that we can test any physics model that will be readily accessible for whole ILC detector concept studies
 - ⇒Not OK, if we need to access to Fluka (or MCNPX) physics could be achieved for testbeam models, but difficult for general whole detector concept studies

Geometry definition

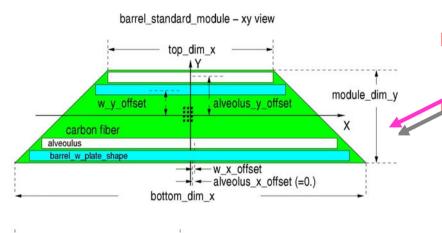
- Organised around single Mokka reference, MySQL relational database
- Detector models, composed of sub-detectors, each implemented by driver code, with parameters (physical dimensions, repeat counts, ...) extracted from relevant tables in Mokka database at runtime, e.g.

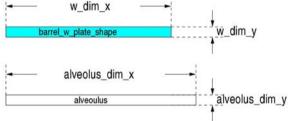
Model

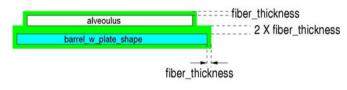


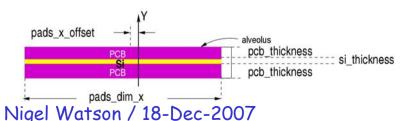

Ingredients

model	sub_detector
D08	ecal02
D08	hcal02
D08	mask00
D08	field01
D08	tpc00
D08	yoke00
D08	coil00


Sub-detectors


name	db	driver
ecal02	ecal02	ecal02
hcal02	hcal02	hcal02
mask00	mask00	mask00
field01	field01	field00
tpc00	tpc00	tpc00
coil00	coil00	coil00
yoke00	yoke00	yoke00





Geometry definition - and reconstruction

- Mokka uses regular geometry definition using symmetry/replication
 - "What about imperfections in real testbeam data?
 - Relative sub-detector alignment and internal geometry
 - Necessary to simulate this? if so, where is geometry defined and how does reco find it?
 - ⇒ Calice conditions database but Mokka not just used by Calice!
 - ⇒ Mokka database duplicates reference source of data in Calice database!
 - ▶ Not a new problem...

Geometry options

- Copy Mokka geometric data into Calice conditions db, use same reconstruction code for data/MC, analyse data and put improved position estimates in Mokka db
- Use GEAR to access geometry in reco, but intended to be ~general, so not ideal to have much experiment-specific code
- Use Mokka conditions db directly to generate Mokka geometry
 - ▶ Ideal way, geometry data more easily under Calice control, ensure same used for simulation and reco
 - Most effort intensive, requires drivers to be re-written
 - ▶ Implies regenerating MC when new geometrical constants evaluated
- Changes relatively infrequently, few times/year

Beam profile

- Mokka accepts inputs from
 - Particle gun, with independent smearing of position/momentum
 - Stdhep/hepevt
- Option to use BDSIM for beamline modelling, integrated to Geant4
 - ▶ Incomplete data from CERN/AB
 - ▶ BDSIM expertise/effort not so forthcoming
- Pragmatic solution: use data driven parametrisation of position, generate stdhep file
 - Caveat: requires extrapolation to -25m, through materal upstream of instruments.
- Harder for user to generate small samples of events for personal debugging/study, but....
 - Running the reco is still a relatively an expert task anyway
- Changes for every run book keeping problem?!
 - Run-specific parameteters extracted from Calice conditions db, into steering files/macro files to drive run
 - Run number to simulate, and database tag immediting prior to MC production written to runHeader
 - Unpacked by reco processors to apply appropriate run-specific treatment (noise, etc.) as necessary.

Comparison with Simulation Model

- Geant4 as simulation framework
 - ▶ OK
- Simulated output in LCIO format, directly comparable with data
 - OK, compatibility with data
- Support for wide range of physics models
 - Built into G4 framework
 - No good solution for Fluka
- Support for multiple testbeam installations and whole detector models within common framework
 - OK for testbeams; plausibly OK for ILD detector concept models, but SiD uses different g4 application (slic)
 - Potentially significant problem for Calice results to be used by both ILD and SiD ⇒ Connection to data results at higher/more astract level for SiD?
- Accessible for grid production and individual users
 - OK for production
 - Single users encounter more difficulty when "run-by-run" simulation implementation of real conditions
- Models adaptable for systematic studies
 - Difficult to adapt for non-expert/author
 - Not as flexible e.g. as slic

Conclusions

Aim 2) "Compare Monte Carlo models with data to measure the degree of accuracy of the models"

- Requires detailed description of all aspects of multiple testbeam installations
 - Physics models
 - Detector geometry/materials/placement
 - Beam profile
 - Digitisation

Aim 3), "Apply knowledge gained from 2) to optimise the ILC detector calorimeters with a verified, realistic and trustworthy simulation"

- Requires
 - The ILC detector concept models to be implemented to the same level of detail/accuracy which is found necessary to obtain acceptable level of agreement with testbeam data
 - Use of same physics models and parameter tunes
 - Prescription to attribute testbeam data-derived uncertainty to predictions of ILC detector concept studies

Backup slides

A detailed description of the TB06 models

- Drift Chambers (FS):
 - installed by Kobe collaborators for the 05 test beam
 - gas mixture is non-flammable (96% Ar, 4% Ethane)
 - 4 drift chambers (72x72x88 mm³)
 - hits written out in LCIO format
 - To reduce number of hits, only hits with E_{rel} > 0.001 are written in output
- Trigger scintillators (FS):
 - 3 scintillators (one 120x120x8 mm³, two 200x200x8 mm³) used in the trigger
 - hits written out in LCIO format
 - Hits simulated as Calorimeter hits (one hit per chamber)

Detector description: TBDesy0506

II

- Finger counters (FS):
 - 2 scintillators (5x100x5 mm³) placed in T shape to monitor beam position
 - hits written out in LCIO format
 - Hits simulated as Calorimeter hits (one hit per chamber)
- ECAL (G.Musat):
 - 3 modules (5 slabs)
 - tungsten thicknesses = 1.4, 2.8, and 4.2 mm.
 - silicon planes divided into wafers
 - 6x6 cells (10x10 mm²), guard-rings (1 mm width)
 - Two separate hits collections, one for hits in cells and the other for hits in guard-rings

Detector description: TBCern0806

I

- Cerenkov detector (FS):
 - It is upstream of the first trigger scintillator (~25 m)
 - 100x100x11000 mm³, 180μ mylar windows, helium gas
 - Only the material is simulated
- Drift Chambers (FS):
 - provided by CERN (50% Ar, 50% CO₂)
 - 3 drift chambers (108x108x44 mm³)
 - hits written out in LCIO format
 - To reduce number of hits, only hits with E_{rel} > 0.001 are written in output
- Trigger scintillators (FS):
 - 3 scintillators used in the trigger (one 30x30x15 mm³, two 100x100x15 mm³)
 - One veto scintillator (200x200x15 mm³)
 - hits written out in LCIO format

Detector description: TBCern0806

II

- ECAL (G.Musat):
 - same as for TBDesy0506
- HCAL (R.Poeschl, O.Wendt):
 - 39 layers (900x900x30 mm³). Each layer is composed by an iron absorber and scintillating material and is sub-divided into 90x90 mm² cells of 10x10mm² (virtual cell scheme)
 - Cell numbering scheme (from lower left corner of each layer)
 - i = row, j = column, k = layer.
- TailCatcher (J.McCormick, G.Lima):
 - 16 layers (absorber+air+readout module)
 - 2 different absorber thicknesses (19 mm layers 1 to 8, 101 mm layers 9 to 16).
 Readout modules: 9.5 mm. X,Y dimensions: 1168x1168 mm²
 - All absorbers in place, but only 8 readout modules (1, 4, 7, 10 vertical strips, 2, 5, 8, 11 horizontal strips)
- Muon Counters (FS):
 - 2 scintillators (1000x1000x50mm³)

Detector description: TBCern1006

- Cerenkov detector (FS):
 - same as TBCern0806
- Drift Chambers (FS):
 - same as TBCern0806
- Trigger scintillators (FS):
 - same as TBCern0806
- ECAL (G.Musat):
 - same as TBCern0806
- HCAL (R.Poeschl, O.Wendt):
 - Only 30 layers, with same characteristic as TBCern0806
- TailCatcher (J.McCormick, G.Lima):
 - Same as TBCern0806, but with all layers fully instrumented
- Muon Counters (FS):
 - same as TBCern0806