SiD PFA Status and Plans

Andy White, UTA

SiD Phone meeting, Dec 6, 2007

SiD PFA Status and Plans

- Goal(s)
- Organization/meetings
- PFA basics
- Which PFA?
- SiD PFA examples
- Perfect PFA
- Real PFA performance
- Towards the LOI
- Benchmarking and PFAs

-Issues - manpower, convergence, timescale, use of PFAs up to 1 TeV??

Goal for SiD PFA

- Principal focus is the SiD LOI - October 2008

- We will have O(10) benchmark processes defined by the RD...plus some of our own to highlight SiD performance.

- PFA and Benchmarking have been discussing starting to use a "Perfect PFA" for initial benchmark studies (more on this later...).

- Ultimately we want to use a fully developed SiD PFA to a) optimize the SiD detector design, *and*

b) demonstrate the SiD physics performance

SiD PFA organization/meetings

Currently involved:

Ron Cassell, Dhiman Chakraborty, Mat Charles, Ray Cowan, Norman Graf, Guilherme Lima, Steve Magill, Jose Repond, Marcel Stanitzki, Andy White, Lei Xia, Vishnu Zutshi ... but only 3-4 FTEs!

Regular weekly meetings: Wednesday 10.30am - 12pm CDT

-> updates, performance comparisons, cross checks, bug identification and fixing,

PFA - Basics

PFA: an algorithmic problem of making the correct assignments of energy depositions in the calorimeter system:

Component	Detector	Frac. of jet energy	Particle Resolution	Jet Energy Resolution		
Charged Particles (X [±])	Tracker	0.6	10 ⁻⁴ E <mark>x</mark>	neg.		
Photons (γ)	ECAL	0.3	0.11√E _γ	0.06√E _{jet}		
Neutral Hadrons (h ⁰)	HCAL	0.1	0.4/Eh	0.13√E _{jet}		
0.14√E _{jet}						

$$\sigma_{jet}^{2} = \sigma_{x^{\pm}}^{2} + \sigma_{\gamma}^{2} + \sigma_{h^{0}}^{2} + \sigma_{confusion}^{2} + \sigma_{threshold}^{2} + \dots$$

Quantitative goal: for jets $\sigma/E \sim 3-4\%$ This equivalent to $\sigma \sim 0.3\sqrt{E}$ at the Z-pole

Matt Charles, ALCPG07 - many efforts:

What **PFAs** are there?

There are many:

- In Europe: • Mark Thomson (PandoraPFA)
 - Alexei Raspereza (Wolf)
 - Oliver Wendt (TrackBasedPFA)

In North America:

- Mat Charles
- Steve Magill
- Lei Xia (Density-based)
- NIU (Directed tree)

In Asia:

Tamaki Yoshioka et al

... plus more components at various stages of integration:

- Photon finders and identifiers (e.g. H-matrix)
- Muon finders
- π⁰ reconstruction

- Calibration
- Tools (e.g. DigiSim, template)
- ...

Example: Structured Clustering Algorithm

Mat Charles - lowa

- Step 1: Find photons, remove their hits.
 - Tight clustering
 - Apply shower size, shape, position cuts (very soft photons fail these)
 - Make sure that they aren't connected to a charged track
- Step 2: Identify MIPs/track segments in calorimeters. Identify dense clumps of hits.
 - These are the building blocks for hadronic showers
 - Pretty easy to define & find

• Step 3: Reconstruct skeleton hadronic showers

- Coarse clustering to find shower components (track segments, clumps) that are nearby
- Use geometrical information in likelihood selector to see if pairs of components are connected
- Build topologically connected skeletons
- If >1 track connected to a skeleton, go back and cut links to separate
- Muons and electrons implicitly included in this step too

Step 4: Flesh out showers with nearby hits

- Proximity-based clustering with 3cm threshold
- Step 5: Identify charged primaries, neutral primaries, soft photons, fragments
 - Extrapolate tracks to clusters to find charged primaries
 - Look at size, pointing, position to discriminate between other cases
 - Merge fragments into nearest primary
 - Use E/p veto on track-cluster matching to reject mistakes (inefficient but mostly unbiased)
 - Use calibration to get mass for neutrals & for charged clusters without a track match (calibrations for EM, hadronic showers provided by Ron Cassell)

Known issues & planned improvements:

- Still some cases when multiple tracks get assigned to a single cluster
- Punch-through (muons and energetic/late-showering hadrons) confuses E/p cut
- Improve photon reconstruction & ID
- Improve shower likelihood (more geometry input)
- Use real tracking when available
- No real charged PID done at this point

What is the target performance?

Perfect PFA – SiD01 e⁺e⁻ -> qq @ 200 GeV

Perfect PFA

Status of PFA peformance/June 2007

rms ₉₀ (GeV)	Detector model	Tracker outer R	Cal thickness	Shower model	Dijet 91GeV	Dijet 200GeV	Dijet 360GeV	Dijet 500GeV	ZZ 500Ge√⁰
ANL(I)+SLAC					3.2/9.9ª				
ANL(II)	ein	1.2m	5.)	L CDburg	3.3	9.1		27.6	
lowa	510	1.500	~5 ^	LOPHys					5.2¢
NIU					3.9/11.ª				
PandoraPFA*	LDC	1.7m	~7 X	LHEP	2.8	4.3	7.9	11.9	
GLD PFA*	GLD	2.1m	5.7 λ	LCPhys	2.8	6.4	12.9	19.0	
30%/sqrt(E)					2.86	4.24	5.69	6.71	(?)
3%					1.93	4.24	7.64	10.61	(?)
4%					2.57	5.67	10.18	14.14	(?)

* From talks given by Mark Thomson and Tamaki Yoshioka at LCWS'07

a) 2 Gaussian fit, (central Gaussian width/2nd Gaussian width)

b) Z₁→nunubar, Z₂→qqbar (uds)

Di-jet mass residual [= true mass of Z2 - reconstructed mass of Z2]

Incomplete and not directly comparable!

Le Xia - ANL, at DOE/NSF Review

Xia - ANL

Example of recent progress on SiD PFA

eventMassResidualsToTruthInBarrel2

Alternative approach/cross-check: PANDORA/PFA

Configuration	n/sqrt(E)	Jet energy
LDC00Sc	30.5	45
LDC00Sc 5T	31.2	45
LDC00Sc 30 layer ECAL	32.4	45
LDC00Sc Sid-ish 4T	32.6	45
LDC00Sc Sid-ish 5T	32.0	45
LDC00Sc Sid-ish 6T	33.8	45
LDC00Sc	36.7	100
LDC00Sc Sid-ish 4T	42.7	100
LDC00Sc Sid-ish 5T	41.0	100
LDC00Sc Sid-ish 6T	39.8	100

σ ~ 3.1 GeV

Errors ± 0.2-0.3

100 GeV Numbers very preliminary

M. Stanitski (RAL)

Alternative approach/cross-check: PANDORA/PFA

What have I learnt so far ?

- ECAL depth 40->30 layers
 - ~ ~ 2-3 % worse
- Shrinking radius and increasing field to 5 T
 - ~ 2 % worse
- Changing physics lists

```
- 2-10 % ?
```

An *additive* 10% !! Huge effect: under investigation.

M. Stanitski (RAL)

Towards the LOI

- Discussions with SiD Benchmarking Group
- Initially use the SiD Perfect PFA:
 - test the software and LCIO data structure
 - allows the benchmarking to start with something closer to the final PFA tool than e.g. Fast MC

- hopefully will give SiD 1-2 analysis examples fast to serve as basis for getting more people involved in benchmarking for the LOI.

- Major issue! Can we complete the work on a useable SiD PFA in time for the physics studies for the LOI?

Perfect PFA - a starting point for benchmarking How realistic is it?

- Tracking: The tracking is parameterized as in the FastMC. However, full detector effects (interactions and decays) before the calorimeter are taken into account in deciding which particles are actually tracked.
- Neutrals: No parameterization. Perfect pattern recognition (no confusion term), but actual detector responses used for energy and direction. So most of the nasty nonlinear, nongaussian effects are included.

Ron Cassell, December 4, 2007

SiD PFA Manpower

- Currently 3-4 FTEs
- Recruitment:

SLAC - 1 new person (Simulation/PFA) SUNY/Stony Brook - search underway U. Iowa - possibility of new person NIU - restarting work on Directed Tree + re-assignment of existing personnel??

SID PFA: 500 GeV/1 TeV

- We do not have the "official" benchmark list yet.
- Consensus within SiD -> put emphasis on 500 GeV...

- ...however, the calorimeter system we will build will be for 1 TeV running also.

- Possibilities:

1) Study e.g. rise in confusion 500 GeV -> 1 TeV

2) PFA-assisted calorimetry (e.g. ALEPH, ZEUS) at 1 TeV?

3) be sensitive to how the calorimeter system would perform as "traditional" calorimetry.

4)??