Benchmarking Plans, Andrei Nomerotski, 30 Jan 2008	
1. $e^+e^- \rightarrow Zh, \rightarrow \ell^+\ell^-X, l = e, \mu; m_h = 120 \text{ GeV at } \sqrt{s} = 0.25 \text{ TeV}$	SLAC
2. $e^+e^- \rightarrow Zh, Z \rightarrow q\bar{q}, \nu\bar{\nu}; h \rightarrow c\bar{c}, \mu^+\mu^-; m_h = 120 \text{ GeV at } \sqrt{s} = 0.25 \text{ TeV}$	Michigan/Bristol?
3. $e^+e^- \rightarrow \tau^+\tau^-$, at $\sqrt{s}=0.5 \text{ TeV}$	Texas A&M ?
4. $e^+e^- \rightarrow t\bar{t}$ at $\sqrt{s}=0.5$ TeV	RAL/Oxford
5. $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- / \tilde{\chi}_2^0 \tilde{\chi}_2^0 \rightarrow W^+ W^- \tilde{\chi}_1^0 \tilde{\chi}_1^0 / ZZ \tilde{\chi}_1^0 \tilde{\chi}_1^0$ at $\sqrt{s}=0.5 \text{ TeV}$	SLAC
6. $e^+e^- \rightarrow c\bar{c}, b\bar{b}, \text{ at } \sqrt{s}=0.5 \text{ TeV};$	Oxford
7. $e^+e^- \rightarrow Zhh, m_h = 120 \text{ GeV} \text{ at } \sqrt{s} = 0.5 \text{ TeV};$	Oxford
8. $e^+e^- \rightarrow \tilde{\tau}_1 \tilde{\tau}_1$, at Point 3 at $\sqrt{s}=0.5$ TeV; Texas A&N	I/Colorado ? /Montene
9. $e^+e^- \rightarrow \tilde{t}_1 \tilde{t}_1^* \rightarrow c \bar{c} \tilde{\chi}_1^0 \tilde{\chi}_1^0, m_{\tilde{t}_1} = 120 \text{ GeV}, m_{\tilde{\chi}_1^0} = 100 \text{ GeV}, \text{ at } \sqrt{s} = 0.5 \text{ TeV}$	Lancaster
10. $e^+e^- \rightarrow \tilde{b}_1\tilde{b}_1^* \rightarrow b\bar{b}\tilde{\chi}_1^0\tilde{\chi}_1^0$, at $\sqrt{s}=0.5$ TeV	Oxford/Montenegro
11. $e^+e^- \rightarrow \mu^+\mu^-$, at $\sqrt{s}=0.5$ TeV	SLAC
12. Н→ үү	RAL

Comments

- We have a good model to do benchmarking studies
 - Develop analyses with fastMC
 - Use PerfectPFA to probe material effects (full GEANT MC)
 - Switch to final reconstruction when ready
- We have a usable model to use the LCFI vertexing/flavour tagging package
 - though Marlin-Icsim.org reflections in LCIO
- Manpower is a concern
 - So far kept most of people at SLAC/RAL/Oxford working on benchmarking but this will change for UK in 2009
 - Funding problems in UK does not affect present students but will affect academics and postdocs
 - Students in Oxford are in position to study simultaneously SiD and ILD
- Adjusting plans to have Lol in April 2009 should not be a problem