SiD Benchmarking Status

Tim Barklow Jan 29, 2008

Outline

- Compulsory Physics Benchmarks for LOI
- Additional SiD Benchmarks for LOI
- Manpower
- Tools
- SiD Benchmarking Timeline
- Data Set News
- Examples of recent analysis work

Compulsory LOI Benchmarking List

At a Dec 7 meeting between Sakue Yamada and representatives of SiD, ILD, 4th Concept, and the WWS, it was agreed that the following reactions will be used for LOI Physics Benchmarking:

1.
$$e^+e^- \to Zh, \to \ell^+\ell^-X, l = e, \mu; m_h = 120 \text{ GeV at } \sqrt{s} = 0.25 \text{ TeV}$$

2. $e^+e^- \to Zh, Z \to q\bar{q}, \nu\bar{\nu}; h \to c\bar{c}, \mu^+\mu^-; m_h = 120 \text{ GeV at } \sqrt{s} = 0.25 \text{ TeV}$
3. $e^+e^- \to \tau^+\tau^-, \text{ at } \sqrt{s} = 0.5 \text{ TeV}$
4. $e^+e^- \to t\bar{t} \text{ at } \sqrt{s} = 0.5 \text{ TeV}$
5. $e^+e^- \to \tilde{\chi}_1^+\tilde{\chi}_1^-/\tilde{\chi}_2^0\tilde{\chi}_2^0 \to W^+W^-\tilde{\chi}_1^0\tilde{\chi}_1^0 / ZZ\tilde{\chi}_1^0\tilde{\chi}_1^0 \text{ at } \sqrt{s} = 0.5 \text{ TeV}$

N.B.: The physics observables that are to be measured have not yet been determined.

Compulsory LOI Benchmark Observables - SiD Proposal

1. $e^+e^- \rightarrow Zh, \rightarrow \ell^+\ell^-X, l = e, \mu; m_h = 120 \text{ GeV at } \sqrt{s} = 0.25 \text{ TeV}$

 $M_h \& \sigma(e^+e^- \to Zh)$

2. $e^+e^- \rightarrow Zh, Z \rightarrow q\bar{q}, \nu\bar{\nu}; h \rightarrow c\bar{c}, \mu^+\mu^-; m_h = 120 \text{ GeV at } \sqrt{s} = 0.25 \text{ TeV}$

 $BR(h \rightarrow c\bar{c}) \& BR(h \rightarrow \mu^+\mu^-)$

3. $e^+e^- \rightarrow \tau^+\tau^-$, at $\sqrt{s}=0.5$ TeV

Identification efficiency and purity for $\tau^- \to \pi^- \nu_\tau$, $\,\rho^- \nu_\tau$

4. $e^+e^- \rightarrow t\bar{t}$ at $\sqrt{s}=0.5$ TeV

$$\begin{split} &\sigma(e^+e^- \to t\bar{t}) \quad \& \quad M_t \text{ (as defined in tree-level event generator such as WHIZARD)} \\ &5. \ e^+e^- \to \tilde{\chi}_1^+ \tilde{\chi}_1^- / \tilde{\chi}_2^0 \tilde{\chi}_2^0 \to W^+ W^- \tilde{\chi}_1^0 \tilde{\chi}_1^0 \ / \ ZZ \tilde{\chi}_1^0 \tilde{\chi}_1^0 \text{ at } \sqrt{s} = 0.5 \text{ TeV} \\ & M_{\tilde{\chi}_1^+}, \ M_{\tilde{\chi}_2^0}, \quad \sigma(e^+e^- \to \tilde{\chi}_1^+ \tilde{\chi}_1^-), \quad \sigma(e^+e^- \to \tilde{\chi}_2^0 \tilde{\chi}_2^0) \end{split}$$

Additional SiD Benchmarking Studies for LOI

6. $e^+e^- \rightarrow c\bar{c}, b\bar{b}, \text{ at } \sqrt{s}{=}0.5 \text{ TeV};$

 $A_{FB}^{LR}(c)$ & $A_{FB}^{LR}(b)$

7.
$$e^+e^- \rightarrow Zhh, m_h = 120 \text{ GeV at } \sqrt{s} = 0.5 \text{ TeV};$$

 g_{hhh}

8. $e^+e^- \rightarrow \tilde{\tau}_1\tilde{\tau}_1$, at Point 3 at $\sqrt{s}=0.5$ TeV; $M_{\tilde{\tau}_1} \ \sigma(e^+e^- \rightarrow \tilde{\tau}_1\tilde{\tau}_1)$ 9. $e^+e^- \rightarrow \tilde{t}_1\tilde{t}_1^* \rightarrow c\bar{c}\tilde{\chi}_1^0\tilde{\chi}_1^0$, $m_{\tilde{t}_1} = 120$ GeV, $m_{\tilde{\chi}_1^0} = 100$ GeV, at $\sqrt{s}=0.5$ TeV $M_{\tilde{t}_1}, \ \sigma(e^+e^- \rightarrow \tilde{t}_1\tilde{t}_1^*), \ \cos\theta_{\tilde{t}}$ 10. $e^+e^- \rightarrow \tilde{b}_1\tilde{b}_1^* \rightarrow b\bar{b}\tilde{\chi}_1^0\tilde{\chi}_1^0$, at $\sqrt{s}=0.5$ TeV $M_{\tilde{b}_1}, \ \sigma(e^+e^- \rightarrow \tilde{b}_1\tilde{b}_1^*)$ 11. $e^+e^- \rightarrow \mu^+\mu^-$, at $\sqrt{s}=0.5$ TeV

Luminosity Weighted \sqrt{s}

Manpower

SLAC 1. $e^+e^- \rightarrow Zh, \rightarrow \ell^+\ell^-X, l=e, \mu; m_h=120 \text{ GeV at } \sqrt{s}=0.25 \text{ TeV}$ 2. $e^+e^- \rightarrow Zh, Z \rightarrow q\bar{q}, \nu\bar{\nu}; h \rightarrow c\bar{c}, \mu^+\mu^-; m_h = 120 \text{ GeV at } \sqrt{s} = 0.25 \text{ TeV}$ Michigan/RAL/Bristol? Texas A&M (Alexei Safonov)? 3. $e^+e^- \rightarrow \tau^+\tau^-$, at $\sqrt{s}=0.5$ TeV Oxford (Eric Devetak) 4. $e^+e^- \rightarrow t\bar{t}$ at $\sqrt{s}=0.5$ TeV 5. $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- / \tilde{\chi}_2^0 \tilde{\chi}_2^0 \rightarrow W^+ W^- \tilde{\chi}_1^0 \tilde{\chi}_1^0 / ZZ \tilde{\chi}_1^0 \tilde{\chi}_1^0$ at $\sqrt{s}=0.5$ TeV SLAC Oxford (Ben Jeffery) 6. $e^+e^- \rightarrow c\bar{c}, b\bar{b}, \text{ at } \sqrt{s}=0.5 \text{ TeV};$ Oxford (Tomas Lastovicka/Yiming Li) 7. $e^+e^- \rightarrow Zhh$, $m_h = 120$ GeV at $\sqrt{s}=0.5$ TeV; Texas A&M/Colorado? 8. $e^+e^- \rightarrow \tilde{\tau}_1\tilde{\tau}_1$, at Point 3 at $\sqrt{s}=0.5$ TeV; 9. $e^+e^- \to \tilde{t}_1 \tilde{t}_1^* \to c \bar{c} \tilde{\chi}_1^0 \tilde{\chi}_1^0$, $m_{\tilde{t}_1} = 120 \text{ GeV}$, $m_{\tilde{\chi}_1^0} = 100 \text{ GeV}$, at $\sqrt{s} = 0.5 \text{ TeV}$ Lancaster 10. $e^+e^- \rightarrow \tilde{b}_1\tilde{b}_1^* \rightarrow b\bar{b}\tilde{\chi}_1^0\tilde{\chi}_1^0$, at $\sqrt{s}=0.5$ TeV Oxford/Montenegro (Gordana Medin) **SLAC** 11. $e^+e^- \rightarrow \mu^+\mu^-$ at $\sqrt{s}=0.5$ TeV

org.lcsim FastMC Covariance matrix for 5 tracker variables parameterized in terms of momentum and polar angle (B. Schumm)

$(\Delta r)^2 (cm^2)$			$(\Delta \varphi)^2$			$(\Delta \Omega)^2 (cm^2)$	-2)		$(\Delta z)^2$ (cm	(2^{2})		$(\Delta\lambda)^2$		
Cov matrix entry	1,	1	Cov matrix entry	2,	2	Cov matrix entry	3,	3	Cov matrix entry	4,	4	Cov matrix entry	5,	
41			41			41			41			41		
13		13				13			13		13			
0.0000			0.0000			0.0000			0.0000			0 0000		
1.000 0.1036E-05			1.000 0.3674E-06			1.000 0.4526E-0	9		1.000 0.1043E-05			1.000 0.3656E-0	5	
1.800 0.5482E-06			1.800 0.1325E-06			1.800 0.1402E-0	9		1.800 0.5589E-06			1.800 0.1316E-0	5	
3.200 0.3398E-06			3.200 0.5287E-07			3.200 0.4470E-1	0		3.200 0.3888E-06			3.200 0.5537E-0	7	
5.600 0.2193E-06			5.600 0.2259E-07			5.600 0.1479E-1	0		5.600 0.3325E-06			5.600 0.3090E-0	7	
10.000 0.1415E-06			10.000 0.9152E-08			10.000 0.4752E-1	1		10.000 0.3133E-0	6		10.000 0.2267E-0	17	
18.000 0.1000E-06			18.000 0.3661E-08			18.000 0.1541E-1	1		18.000 0.3072E-0	6		18.000 0.2006E-0	17	
32.000 0.7850E-07			32.000 0.1535E-08			32.000 0.5423E-1	2		32.000 0.3053E-0	6		32.000 0.1926E-0	17	
56.000 0.6761E-07		56.000 0.7042E-09				56.000 0.2239E-1	2		56.000 0.3048E-0	6	56.000 0.1901E-07			
100.000 0.6270E-07		100.000 0.3814E-09				100.000 0.1164E-	12		100.000 0.3046E-0	06	100.000 0.1893E-07			
180.000 0.6092E-07		180.000 0.2715E-09				180.000 0.8219E-	13		180.000 0.3045E-0	06	180.000 0.1890E-07			
320.000 0.6035E-07		320.000 0.2370E-09				320.000 0.7174E-	13		320.000 0.3045E-0	06		320.000 0.1890E-(07	
560.000 0.6017E-07		560.000 0.2262E-09				560.000 0.6848E-	13		560.000 0.3045E-0	06	560.000 0.1889E-07			
1000.000 0.6011E-07	1		1000.000 0.2226E-0	9		1000.000 0.6740E-	-13		1000.000 0.3045E-	06		1000.000 0.1889E-	-07	
0.1090			0.1090			0.1090			0.1090			0.1090		
1.000 0.1048E-05			1.000 0.3735E-06			1.000 0.4610E-0	9		1.000 0.1063E-05	5		1.000 0.3757E-0	6	
1.800 0.5530E-06		1.800 0.1346E-06				1.800 0.1428E-0	9		1.800 0.5663E-00	5	1.800 0.1349E-06			
3.200 0.3423E-06		3.200 0.5363E-07			3.200 0.4553E-10	0		3.200 0.3914E 00	5	3.200 0.5648E-07				
5.600 0.2209E-06		5.600 0.2291E-07				5.600 0.1506E-10	0		5.600 0.3333E-00	5	5.600 0.3127E-07			
10.000 0.1425E-06		10.000 0.9286E-08				10.000 0.4838E-1	1		10.000 0.3136E-0	6	10.000 0.2279E-07			
18.000 0.1005E-06		18.000 0.3713E-08				18.000 0.1568E-1	00 0.1568E-11 18 000 0 3073E-06					18.000 0.2010E-07		
32.000 0.7875E-07		32.000 0.1556E-08				32.000 0.5510E-1	2	32.000 0.3054E-06				32.000 0.1927E-07		
56.000 0.6773E-07			56.000 0.7126E-09			56.000 0.2268E-1	2		56.000 0.3048E-0	6		56.000 0.1902E-0	17	
100.000 0.6275E-07			100.000 0.3843E-09)		100.000 0.1173E-	12		100.000 0.3046E-0	06		100.000 0.1893E-(07	
180.000 0.6093E-07			180.000 0.2724E-09)		180.000 0.8248E-	13		180.000 0.3045E-0	06		180.000 0.1891E-	07	
320.000 0.6035E-07			320.000 0.2373E-09)		320.000 0.7183E-	13		320.000 0.3045E-0	06		320.000 0.1890E-(07	
560.000 0.6017E-07			560.000 0.2263E-09)		560.000 0.6851E-	13		560.000 0.3045E-0	06		560.000 0.1889E-(07	
1000.000 0.6011E-07			1000.000 0.2226E-0	9		1000.000 0.6741E-	-13		1000.000 0.3045E-	05		1000.000 0.1889E-	-07	

5

Primary Vertex Reconstruction with org.lcsim FastMC

2 µm in z-direction

 \Box <0.8 µm in x-y plane (beamspot constr.) 2 µm (no beamspot constr.)

Solution Vertex resolution pulls are nice Gaussians with $\sigma \sim 1.1$ for all x,y and z

org.lcsim FastMC Figure shows smearing with beamspot constraint \rightarrow (x,y) affected...

org.lcsim FastMC simulation of Calorimeter/PFA output

Use tracker momentum for all charged tracks within acceptance; account for confusion term by blowing up single particle resolution for neutral hadrons

Alternative to org.lcsim FastMC:

Perfect Pattern Recognition Particle Flow Reconstruction or PPR PFA

(Ron Cassell)

What does PPR PFA do?

- Input: Full detector simulations (SLIC)
- Output: Collection of ReconstructedParticles
- Original intent: Examine the potential of a PFA for a detector

How does PPR PFA do it?

- For charged particles that are "trackable", define Tracks and smear parameters (MCFast).
- Define a set of "reconstructable" particles (avoid double counting)
- For "nontrackable" particles, assign energy deposits in the calorimeters (cheat) and do neutral particle reconstruction using those deposits.

How realistic is PPR PFA?

- Tracking: The tracking is parameterized as in the FastMC. However, full detector effects (interactions and decays) before the calorimeter are taken into account in deciding which particles are actually tracked.
- Neutrals: No parameterization. Perfect pattern recognition (no confusion term), but actual detector responses used for energy and direction. So most of the nasty nonlinear, nongaussian effects are included.

PPR PFA Status

- The perfect pattern recognition PFA appears to be ready for use in benchmarking, with a test sample of Zhh events at 500 GeV processed and ready to look at.
- Benchmarking group will begin looking at the Zhh test sample shortly.

List of LOI tasks and time line for these tasks												
Subgroup	LOI-task	Sub-tasks	Dec-07	Jan-08	Feb-08	Mar-08	Apr-08	May-08	Jun-08	Jul-08	Aug-08	Sep
BENCHMARK	strategy for LOI	define benchmark reactions and observables										
		Modify 500 GeV SM data										
BENCHMARK	MC Physics Event Generation	Gen 250 GeV SM data										
		Gen 250 GeV beam bgnd										
		Gen non-SM signals										
BENCHMARK	Physics analysis algorithm development	identify people algorithm bench 1 algorithm bench 2 algorithm bench 3 algorithm bench 4 algorithm bench 5 algorithm bench 6,7,10 algorithm bench 8 algorithm bench 9 algorithm bench 11										
BENCHMARK	Preparation for full sim. & recon.	Establish ground rules for full sim.& recon Perform dress rehearsal of full sim. & recon. chain Negotiate cpu/disk alloc w/ SLAC &Fermi computing										
BENCHMARK	Full sim., recon., & analysis for LOI	Perform full sim. & recon., and produce LCIO files tune/train physics alg using fully sim LCIO as input final physics analysis results ready										
BENCHMARK	write LOI section	select editors subsection outline identify authors create it										

LOI tasks and fra	action complete	d											
Subgroup	LOI-task	Sub-tasks	10%	20% 309	% 40% 50%	60%	70%	80% 90%	100%				
BENCHMARK	strategy for LOI	define benchmark reactions and observables								q	% comple	eted	
BENCHMARK	MC Physics Event Generation	Modify 500 GeV SM data Gen 250 GeV SM data Gen 250 GeV beam bgnd Gen non-SM signals								as of		27 Ja	n 2008
BENCHMARK	Physics analysis algorithm development	identify people algorithm bench 1 algorithm bench 2 algorithm bench 3 algorithm bench 4 algorithm bench 5 algorithm bench 6,7,10 algorithm bench 8 algorithm bench 9 algorithm bench 11							I				
BENCHMARK	Preparation for full sim. & recon.	Establish ground rules for full sim.& recon Perform dress rehearsal of full sim. & recon. chain Negotiate cpu/disk alloc w/ SLAC &Fermi computing											
BENCHMARK	Full sim., recon., & analysis for LOI	Perform full sim. & recon., and produce LCIO files tune/train physics alg using fully sim LCIO as input final physics analysis results ready											
BENCHMARK	write LOI section	select editors subsection outline identify authors create it											

500 fb -1 SM Data Sample at Ecm=500 GeV

Data Sample

Stdhep files for an Ecm=500 GeV SM data sample assuming a 120 GeV Higgs mass are available at http://ftp-lcd.slac.stanford.edu/ilc/ILC500/StandardModel/. There are 487,603,537 events (250 fb -1 luminosity) with -80% electron/ +30% positron polarization, and 474,837,805 events (250 fb -1 luminosity) with +80% electron/ -30% positron polarization. The WHIZARD Monte Carlo version 1.40 is used for parton generation. The Makefile and build log files for this implementation of WHIZARD can be found in ftp://ftp-lcd.slac.stanford.edu/ilc/ILC500/StandardModel/whizard-v1r4p0.

Event Weight

Due to the presence of some high cross section processes the events are not completely unweighted. The event weight must therefore always be considered when analyzing events. This weight is stored in the variable EVENTWEIGHTLH in the stdhep common block HEPEV4.

Process Identification

Events corresponding to hundreds of different processes are stored in random order in the stdhep files. For each event

the variable IDRUPLH from the stdhep common block HEPEV4 is used to identify the process.

Suppose that an event has IDRUPLH=14995 . The information about the generation of this event can be found in the directory ftp://ftp-lcd.slac.stanford.edu/ilc/ILC500/StandardModel/run_output/w14995/run_01/ . For example the log file is ftp://ftp-lcd.slac.stanford.edu/ilc/ILC500/StandardModel/run_output/w14995/run_01/whizard.log , the whizard input file is ftp://ftp-lcd.slac.stanford.edu/ilc/ILC500/StandardModel/run_output/w14995/run_01/whizard.in and cross section information is in ftp://ftp-lcd.slac.stanford.edu/ilc/ILC500/StandardModel/run_output/w14995/run_01/whizard.n3n3n3n3ss_o.out

Full 2 ab-1 SM Data Sample is also available via ftp. Here each file corresponds to a particular initial e-/e+ pol. and final state.

FTP directory /ilc/whizdata/ILC500/ at ftp-lcd.slac.stanford.edu

To view this FTP site in Windows Explorer, click Page, and then click Open FTP Site in Windows Explorer.

Up to higher level directory

09/16/2007	12:00AM	Directory	÷
03/14/2007	12:00AM	Directory	<u></u>
09/14/2007	09:12PM	144	copy.sh
09/14/2007	09:09PM	60,980	theoryDiskContents.txt
09/14/2007	06:15PM	60,911	tmp.txt
09/14/2007	09:16PM	2,138,688,564	w11715 01.stdhep
09/14/2007	09:19PM	2,138,688,564	w11715_02.stdhep
09/14/2007	09:22PM	2,138,688,564	w11715_03.stdhep
09/14/2007	09:23PM	243,273,156	w11715_04.stdhep
09/14/2007	09:23PM	573,450,716	w11715_05.stdhep
09/14/2007	09:27PM	2,138,688,564	w11716_01.stdhep
09/14/2007	09:30PM	2,138,688,564	<u>w11716_02.stdhep</u>
09/14/2007	09:33PM	2,138,688,564	w11716_03.stdhep
09/14/2007	09:34PM	812 , 779 , 312	<u>w11716_04.stdhep</u>
09/14/2007	09:35PM	713,262,648	w11716_05.stdhep
09/14/2007	09:38PM	1,407,942,308	w11719_01.stdhep
09/14/2007	09:40PM	1,408,867,732	w11720_01.stdhep
09/14/2007	09:40PM	145,274,324	w11723_01.stdhep
09/14/2007	09:40PM	145,384,112	w11724_01.stdhep
09/14/2007	09:43PM	2,138,688,564	w11730_01.stdhep
09/14/2007	09:47PM	2,138,688,564	w11730_02.stdhep
09/14/2007	09:50PM	2,138,688,564	w11730_03.stdhep
09/14/2007	09:53PM	2,138,688,564	w11730_04.stdhep
09/14/2007	09:54PM	593,013,820	w11730_05.stdhep
09/14/2007	09:57PM	2,138,688,564	w11731 01.stdhep
09/14/2007	10:01PM	2,138,688,564	w11731_02.stdhep
09/14/2007	10:04PM	2,138,688,564	w11731_03.stdhep
09/14/2007	10:08PM	2,138,688,564	w11731 04.stdhep
09/14/2007	10:12PM	2,138,688,564	<u>w11731_05.stdhep</u>
09/14/2007	10:15PM	2,138,688,564	<u>w11732_01.stdhep</u>
09/14/2007	10:19PM	2,138,688,564	w11732 02.stdhep

Next Steps with SM Data Set

- Remove 120 Higgs from n fermion final states at Ecm=500 GeV, and add explicit ffH, ffHH, etc final states
- Produce full SM data set with Ecm=250 GeV

ZHH Channel First Attempt with the LCFI Package

SiD Benchmarking meeting January 15, 2008

Tomáš Laštovička, Andrei Nomerotski Yiming Li

Neural Net Outputs

Tim's net

LCFI

NN performance comparison

- c-mistag efficiency versus b-tagging efficiency
 - LCFI slightly better
 - □ Note the logarithmic scale
 - Tim's points measured by ruler, based on his efficiency plot shown in Hamburg.
 - □ ZHH events (signal)

Sum of neural net outputs for all jets

Tim's net

LCFI

Rather different shapes. LCFI has more binary behaviour.

SUSY: sbottom analysis

Gordana Lastovicka-Medin (University of Montenegro) 22/1/2008 with Sasha Belyaev, Andrei Nomerotski, Tomas Lastovicka and Marija Kovacevic

SUSY: sbottom analysis

- See talks of Andrei and Tomas on previous WP1 meetings for more details.
- The main idea is that SUSY neutralino is a dark matter candidate. In order not to have too many neutralinos left in our universe they must annihilate effectively – with sbottoms. SMALL MASS SPLIT
- Sbottoms can be eventually produced at ILC via

and then decayed to b-quarks and neutralinos.

Signal samples

Invariant mass of jets

Summary

- Compulsory benchmark reactions almost defined
- Additional benchmarks are a good match to our personnel
- SLAC/Oxford core of benchmarking group is still intact and is ready to push forward with the LOI
- Analysis algorithm development continues and is even growing. We should be ready for full PFA when it becomes available.