

ILC Status Impacts of US/UK Budget Actions Replan for GDE Technical Design Phase

Barry Barish

SiD Workshop - SLAC

28-January-08

28-Jan-08 SiD Workshop **Global Design Effort**

1

• UK ILC R&D Program

- About 40 FTEs. Leadership roles in Damping Rings and Positron Source, as well as in the Beam Delivery System and Beam Dumps.
- All of this program is generic accelerator R&D, some of which may be continued outside the specific ILC project.

• US Program

- ILC R&D is basically terminated for FY08, but we are planning for a reduced level restored program in FY09. Broad based program.
- Generic SCRF also terminated in FY08, but expected to be revived in FY09 separated from ILC R&D. Primarily builds US SCRF capability

İİL

Impacts – US / UK Funding

• Fermilab (ILC and other reductions)

- Consequences include layoffs, lab wide furloughs and reassignments for many personnel
- ILC program most activities suspended for FY08.
 Some support for 1.3GHz program.

• SLAC (ILC and other reductions)

- Staff reductions and reassignments for FY08
- ILC program only within related accelerator R&D for FY08

• GDE

- Continued support for common fund and key personnel.
- Loss of R&D support for FY08 ~ 40% of global total

So, where are we?

- Original charge of the GDE (from ILCSC, ICFA and FALC) was to develop a "global" design. We have succeeded!
 - Established a baseline for the ILC (6 months) This required ~40 critical decisions to agree globally on the key features of a linear collider
 - Developed a reference design, including international reviews of design, R&D program and costs (1.5 years)
- We have reached the original goals !!
- We are at a crossroads. Best strategy ---move on or revert to laboratory driven R&D programs?

- 11km SC linacs operating at 31.5 MV/m for 500 GeV

Centralized injector

- Circular damping rings for electrons and positrons
- Undulator-based positron source
- Single IR with 14 mrad crossing angle
- Dual tunnel configuration for safety and availability

RDR Design Parameters

Max. Center-of-mass energy	500	GeV
Peak Luminosity	~2x10 ³⁴	1/cm ² s
Beam Current	9.0	mA
Repetition rate	5	Hz
Average accelerating gradient	31.5	MV/m
Beam pulse length	0.95	ms
Total Site Length	31	km
Total AC Power Consumption	~230	MW

RDR Design & "Value" Costs

The reference design was "frozen" as of 1-Dec-06 for the purpose of producing the RDR, including costs.

It is important to recognize this is a snapshot and the design will continue to evolve, due to results of the R&D, accelerator studies and value engineering

The value costs have already been reviewed twice

- 3 day "internal review" in Dec
- ILCSC MAC review in Jan

Σ Value = 6.62 B ILC Units

Summary **RDR "Value" Costs Total Value Cost (FY07)** 4.80 B ILC Units Shared **1.82 B Units Site Specific 14.1 K person-years** ("explicit" labor = 24.0 M person-hrs @ 1,700 hrs/yr) 1 ILC Unit = \$1 (2007)

28-Jan-08 SiD Workshop

RDR Reports

• Reference Design Report (4 volumes)

Executive Summary

Physics at the ILC

Accelerator

Detectors

28-Jan-08 SiD Workshop

RDR Author List

Ties Behnke

28-Jan-08 SiD Workshop

Global Design Effort

9

28-Jan-08 SiD Workshop

Gateway to Quantum Universe

Last piece: Companion Document for broad circulation, including translations to eight languages over the coming year.

İİL

DISCOVERY₂₆₀

http://www.linearcollider.org/gateway/

- THE SCIENCE !!!
 - Nothing has changed. A linear collider remains the consensus choice as the highest priority long term investment for particle physics
- The Technology
 - Key technical, design & cost issues must be resolved before a serious project can be proposed
- Strong Global encouragement
 - Strong response urging us to forge ahead and find ways to help or replace US and UK efforts.
 - Global commitment to the Common Fund (Spain)
 - Offers visiting appointments, equipment help, travel, etc

28-Jan-08 SiD Workshop

The Elements of a New Plan

- ILC R&D program must be more focused and strictly prioritized to achieve critical R&D, so project can be proposed, once LHC results justify.
- Build a close collaboration with XFEL. It will provide all SCRF development, except high gradient and ILC scale mass production, including a full systems test in 2013, industrialization, etc.
- Undertaking steps to integrate linear collider (ILC and CLIC) R&D efforts, where beneficial to both efforts (meeting on 8-Feb). Examples – sources, damping rings, beam delivery, conventional facilities, detectors, etc. (Maybe also directly in CLIC R&D).
- Develop analysis of siting considerations (GDE) and process for siting <u>after</u> 2010 (ILCSC/GDE)

- Build on Successes of GDE, RDR and DCR
 - Be ready to make solid funding proposal whenever scientific results from LHC justify.

• Plan

- Re-structure and strengthen GDE to incorporate a more traditional project management structure, engineering strength and project tools.
- R&D program to mid-2010 to develop and Design Phase Design Report that develops RDR through value engineering, completed crucial R&D demonstrations, reliable costing, and a project implementation plan

- Global Project Tools (common funds)
 - Primivera and other costing tools will be implemented
 - An earned value system will be employed during EDR
 - We are implementing an EDMS system for carrying out and documenting the design
- Supporting R&D Program (priorities)
 - High Gradient R&D globally coordinated program to demonstrate gradient for EDR by 2010
 - Electron Cloud Mitigation Electron Cloud tests at Cornell to establish mitigation and verify one damping ring is sufficient.
 - Final Beam Optics Tests at ATF-2 at KEK

28-Jan-08 SiD Workshop

SCRF Technology

Cost / MeV → superconducting accelerator base cost

- Goal:
 - Assess yield of nominal (35 MV/m) cavities
 - Recommend EDR gradient and preparation process in late 2010
- Strategy:
 - Vertical dewar tests of nine-cell cavities
 - Minimize resource needs by repeatedly processing and testing cavities on hand
 - Development of test infrastructure and diagnostics
- Partnerships:

- Rely on process infrastructure in all three regions

Superconducting RF cavities

-150

38

• Projected:

ilr

ΪĹ

- Cavities available
- Test cycles anticipated
- **2006 2012**

Americas	FY06	FY07	FY08	FY09	FY10	ΤΟΤΑΙ	FY11	FY12
Amoridad	(actual)	(actual)				ED-F		
Cavity orders	8	12	19	40	40	103	40	40
Total 'process and test' cycles		40	90	90	115	276	120	120
Asia	FY06	FY07	FY08	FY09	FY10		FY11	FY12
Asia	(actual)	(actual)						
Cavity orders	8	7	15	25	15	59	39	39
Total 'process and test' cycles		21	45	75	45	152	117	117
Europe	2004-08*	2007	2008	2009	2010		2011	2012
Luiope	(actual)	(actual)						
Cavity orders	60			838		898		
Total 'process and test' cycles		14	15	30	100	109	354	354
Global totals								
Global totals - cavity fabrication	76	19	33	903	55	1065	79	79
Global totals - cavity tests	0	75	120	195	260	538	591	594

28-Jan-08 SiD Workshop

- Full gradient RF Unit (3 cryomodule) demonstration (post TDP-I)
- Cost effective design of the integrated cryogenics system
 CERN?
- Optimization of the cryomodule design, component layout & transport
 - beam dynamics
 - quadrupole magnets
 - beam monitoring systems;
- Cost effective design of the RF power and distribution system
 BY 2012

Global Design Effort

XFEL

Saclay Collaboration

STF KEK

Conventional Facilities

Develop most effective design of underground space and utilities – power and water 20 deg to 30 deg?

• Goal:

- 20 deg to 30 deg (joint with CLIC)
- Evaluate basis of RDR estimates and analyze trade-offs
 -value engineering and component R & D
- Two tunnels; shallow vs deep; etc
- Strategy:
 - Focus on top 5 costs:
 - Underground construction, water cooling, air handling, surface buildings and electrical power distribution
 - Analyze and derive basic requirements
- Partnerships:
 - Design and analysis of conventional facilities designs by large labs

Conventional Facilities

Americas Site – 2006 estimate

for illustration only

28-Jan-08 SiD Workshop

Target Value Engineering Milestones, some deferred

	2008							2009														
	Ν	D	J	F	Μ	Α	Μ	J	J	Α	S	0	Ν	D	J	F	Μ	Α	Μ	J	J	A S
2.1.1.1 - Final Criteria Development and Design EDR I																						
Functional requirements template publication																	V					
Functional requirements complete - Main linac																						
Functional requirements complete -BDS and IR												d	el	a	У							
Functional requirements complete - Sources, DR, RTML									4													
																	V					
CFS - Update RDR Main Linac design									į			İ				Ċ						
CFS - Update RDR design other areas																						
Т																						
2.2.2.1 Cost and Schedule Development - Baseline Va	וע					T	ar	ae	÷t.	te	d	V	a	1r	le	Ē	'n	ai	né	96	eri	nc
Process water value engineering - Main linac							ָרא וא	9) (/ · ·	9.				
Underground Space usage – Main linac																						
Air Handling – all areas																						
Underground Space usage – non-linac																						
Surface buildings																						
Electrical – all areas																						
Project Schedule				_	-	~							~									

28-Jan-08 SiD Workshop

Beam Test Facilities

Reduce technical risk through beam-based demonstrations

- Goal → Demonstrate:
 - Control of electron instability Damping Ring
 - Control of 10 mA beam Superconducting Linac
 - Generation and measurement of precision beams Beam Delivery
- Strategy:

İİL

- Based on existing or planned test facilities
- Partnerships:
 - CESR-TA Cornell University
 - TTF / FLASH DESY
 - ATF2 KEK

Beam Test Facility Deliverables and Schedule

Test Facility	Deliverable	Date
ATF	Generation of 1 pm-rad low emittance beam	2009
ATF2	35 nm beam size	2010
STF	RF Unit demonstration	2011
FLASH	Full 10mA, 1 GeV, high-repetition rate operation	2008
ILC SLACESA	Energy spectrometer, energy spread and collimator tests	2008
	DE Unit demonstration	2012
CESR-TA	Electron cloud mitigation tests	2010

. . .

- Ensure the e- cloud won't blow up the e+ beam emittance.
 - Do simulations (cheap)
 - Test vacuum pipe coatings, grooved chambers, and clearing electrodes effect on e- cloud buildup
 - Do above in ILC style wigglers with low emittance beam to minimize the extrapolation to the ILC.
- Electron cloud problem goes well beyond ILC
- Experimental program at CesrTA crucial

TDP I -- 2010

- Technical risk reduction:
 - Gradient
 - Results based on re-processed cavities
 - Reduced number $540 \rightarrow 390$ (reduced US program)
 - Electron Cloud (CesrTA)
- Cost risks (reductions) Main Cost Drivers
 - Conventional Facilities (water, etc)
 - Main Linac Technology
- Technical progress ? (global design & US??)
 Cryomodule baseline design defined

- RF unit test 3 CM + beam (STF)
- Complete technical design and R&D needed for project proposal (exceptions*)
- Documented design
- Complete and reliable cost roll up
- Project plan developed by consensus
- CM Global Manufacturing plan
- Siting Plan or Process

- Intermediate goal
 - Achieve 31.5 MV/m average operational accelerating gradient in a single cryomodule as a proof-ofprinciple. In case of cavities performing below the average, this could be achieved by tweaking the RF distribution accordingly.
 - Auxiliary systems like fast tuners should all work.
- Final goal
 - Achieve > 31.5 MeV/m operational gradient in 3 cryomodules.
 - The cavities accepted in the low power test should achieve 35 MV/m at $Q_0 = 10^{10}$ with a yield as described above (80% after first test, 95% after re-preparation).
 - It does not need to be the final cryomodule design

TDP II 2012 what won't be done?

- Detailed Engineering Design (final engineering, drawings, industry, etc) will follow before construction.
- Global CM industrial plant construction
- Other Unresolved Issues
 - Positron Source ???
 - Damping Ring Design work?

- Central coordination by the GDE is even more essential, if we want to prepare to propose an ILC project
- The will is there!
- A plan to recover from UK and US actions appears possible with reduced goals, strict prioritization and stretched out timescale
- A two stage Technical Design Phase (TDP I 2010 and TDP II 2012 is proposed
- We must have the support of FALC, P5, ILCSC and ICFA to continue with this plan