PFA Studies in SiD

Mat Charles The University of Iowa

The University of Iowa

Mat Charles, SiD Workshop at SLAC, 2008-01-28

Outline

- The goals
- Status & plans of PFA implementations
- Progress since October workshop
- Outlook

Not in this talk:

- Intro & fundamentals of PFA
- PandoraPFA

THE UNIVERSITY OF LOWA

The goals

- Study the physics performance of the detector
 - ... particularly the benchmark channels

THE UNIVERSITY OF LOWA

- Optimize the detector design quantitatively
- Make informed, rational technology choices

To do these with confidence, we need a robust, highperformance PFA.

• Rule of thumb: dijet mass resolution ~ 3 to 4 GeV.

List of existing PFAs + brief status

Obvious question these days: which still have manpower?

- Steve Magill: Track following + E/p clustering
 - Still moving (wrapping up?).
 - See Steve's parallel session talk.
- Lei Xia: Density-based clustering.
 - Algorithm was looking promising, but progress stalled (lack of time).
 - No time for PFA development in foreseeable future, but still modularizing & supporting existing packages.
- NIU/NICADD group: Directed tree clustering
 - No time for PFA development, but still supporting existing packages
- Mat Charles: NonTrivialPFA & ReclusterDTree
 - NonTrivialPFA is now stable (release 1.0 in CVS)
 - ReclusterDTreeDriver is unstable (snapshot release 0.1 in CVS)
 - Working part-time on PFA development (split with BABAR + others)

The University of Iowa

Side note on manpower

Important not to forget that there are other people working on modules, infrastructure, benchmarking, tools, etc:

- Ron (see previous talk)
- Dima (looking into PFA/tracking interface)
- Ray, Lawrence (testing/benchmarking PFA output)
- Ray, Marcel, George (PandoraPFA -- see next talk)
- Qingmin (photon-finding)

The University of Iowa

• ... and more besides (apologies!)

Progress since October

• Steve Magill's PFA

- Improved clustering (now using DTree)
- New results coming up.

NonTrivialPFA & ReclusterDTreePFA

• New algorithm

The University of Iowa

- Improvements in resolution (but still quite a long way to go)
- MIT group (Ray Cowan + Lawrence Bronk) have just started program of running PFA on detector design variants.

See also Ron & Marcel's talks, and talks in PFA parallel session.

Progress (Steve): PFA summary

- Current implementation (updated since October):
 - Track-MIP association

The University of Iowa

- Track-cluster association (DT clustering, E/p)
- Photon finding (DT & NN clustering, H-matrix ID)
- Neutral hadron finding (DT clustering, cluster merges w/ cone algorithm)
- Algorithm parameters tuned only on single-particle events (W/Scint HCAL). Process-independent!
- Steve plans to release code soon (after final tuning).

Progress (Steve): Z-pole performance

Showing dijet invariant mass for events with $|\cos\theta| < 0.9$ KT algorithm used to find 2 jets.

• That wasn't the case for perfect PFA... possibly due to E/p checking? Bigger ECAL radius helps a bit (but be careful of stat. uncertainty) THE UNIVERSITY OF IOWA Mat Charles, SiD Workshop at SLAC, 2008-01-28

Progress (lowa): Algorithm development

New(ish) approach: iterative reclustering

- Basic premise presented at FNAL in October:
 - Break hadronic showers into digestible pieces.
 - Use geometrical information to link them...
 - \bullet ... taking into account E/p and other nearby showers.
- Now coded up & running. Approach has evolved:
 - Use fuzzy clustering to for unassigned hits (fragments)
 - Use **DirectedTree** clusterer to define "envelope" clusters
 - \bullet Introduce E/p veto if wrong by more than 2.5σ
 - Recoded MIP-finder to do better with shower "tentacles"
 - Aggressive second pass to match clusters to tracks

THE UNIVERSITY OF LOWA

Progress (lowa): Performance Showing dijet invariant mass for events with |cosθ|<0.8. Detector design: sid01 (Steel/Scint HCAL)

Progress (lowa): Tools & plans

Some useful tools:

- Ron's cluster analysis package (picks out confusion matrix)
- Cheaters for various pieces
- Global chi2 based on E/p (not quite trustworthy yet...)

Plans & known problems:

- Currently limited to rms90 ~ 4.3 GeV even when cheating on linkage -need to understand why & break through.
 - Candidate: Some fragments get thrown away => lose neutral energy
 - Candidate: Large clumps that should be broken up/shared but are treated as single lump
 - Candidate: Impurities in photon list <_____[Ron is helping with these]
 - Candidate: E/p goes bad for muons & punch-through
- Over-aggressive assignment of clusters to tracks can force mistakes
- MIP-finding still not 100% efficient (clear by eye)

The University of Iowa

Comparisons & benchmarks

Still not at the point where PFA can unambiguously say which detector design is better.

	rms ₉₀	sid01	acme0605
Z-pole results (sorry Marty!)	Steve PFA	4.6 GeV	4.0 GeV
	NonTrivialPFA	4.5 GeV	4.1 GeV
	ReclusterDTree	3.9 GeV	3.9 GeV

... but important to start thinking about this now, doing trial runs, looking for obvious patterns

> MIT group (Ray & Lawrence) just got started on survey of design variants with Iowa PFA code. [Example: # HCAL layers]

The University of Iowa

Other things on the radar

- Dual-readout
 - Promising idea (for both confusion and σ_{NH} terms)
 - Software issue: Tricky to implement in our framework
 - See Adam's talk this afternoon
- Tracking improvements

Outlook

- PFA is critical for SiD (& most generic LC detectors)
- Given near-term manpower, very unlikely to meet original LOI schedule.
- Extended schedule (+6 months?) is not a sign to relax!
 - If we are serious about SiD, must not lose momentum on PFA
 - We may actually have less (time×manpower) than before.
- Current PFA experts will not be around forever
 - Critical to maintain expertise (takes a long time to develop)
 - Need to consciously recruit & train new experts.
 - Vital to consolidate progress & make it accessible to others.
 - Put your code in CVS! Document it! Get others using it!
 - General interest in writing a NIM, though no concrete plans.

• Despite the gloom, we are making progress!

THE UNIVERSITY OF LOWA