

Electronics Systems Discussion

presented by Gunther Haller

Research Engineering Group Particle Physics and Astrophysics Division SLAC-Stanford University

Ryan Herbst, Dieter Freytag, Martin Breidenbach

January 30, 2008

January 30, 08 SiD Meeting SLAC Gunther Haller haller@slac.stanford.edu

1

Overview

- Electronics Architecture
- Cold-Machine Readout
- Warm-Machine, focusing here on KPIX readout
- DAQ Hardware

Electronics Architecture

- Total data rate from each front-end relatively small, thus can combine data from several front-ends to reduce number of connections to the outside of the detector
- Front-End ASICs/electronics transmit event data to concentrator 1 boards
 - Digital interface (optical or electrical, e.g. LVDS)
 - Concentrator 1 boards close to front-end, combining data-streams from several front-end ASICs
 - Zero-suppression either at front-end or on concentrator 1 boards
 - No additional processing needed at this stage
- Event data from concentrator 1 boards are combined in concentrator 2 boards
 - Multiplexing of concentrator 1 board event data onto fewer fibers
- Event data is transmitted to top or side of detector
 - ATCA crate (see later) to process and switch data packets
 - Online farm for filtering (if necessary)

January 30, 08 SiD Meeting SLAC 3

Gunther Haller haller@slac.stanford.edu

EM Barrel Example (Cold)

- Readout to outside-Detector crates via 3 Gbit/s fibers
 - Single 6-slot crate to receive 36 fibers: 5 RCE modules + 1 Cluster Interconnect Module (CIM)
 - Total out of EM Barrel partition: 1.6 Gbytes/s
 - Available bandwidth: > 80 Gbit/s (and is scalable)
- Sorting, data reduction
- Can be switched into ATCA processors for data-filtering/reduction or online farm
 - A few 10-G Ethernet fibers off detector

January 30, 08 SiD Meeting SLAC 4

Gunther Haller haller@slac.stanford.edu

Warm-Machine Assumptions

- 100 ns to 1000 ns train length
- 100 Hz to 1KHz train spacing
- Hits: depends on sub-system.
 - Iook here at calorimeter, assume for now 1 hit per train
 - get 50 nsec granularity when hit occurred in train

EM Barrel Example

- 1000 channels for each KPIX
 - Still don't need zero-suppression on KPIX
 - Settle + digitize: 400 usec
 - Readout: 1024 channels x 2 words x 14 bits x 50 nsec = 573 nsec
 - Requires some modification to optimize data in the readout structure

SiD Meeting SLAC

haller@slac.stanford.edu

- 1 ATCA crate for each sub-system for partitioning reasons
 - Two custom modules
 - RCE: Reconfigurable Cluster Element
 - CIM: Cluster Interconnect Module

DAQ Sub-System

- Based on ATCA (Advanced Telecommunications Computing Architecture)
 - Next generation of "carrier grade" communication equipment
 - Driven by telecom industry
 - Incorporates latest trends in high speed interconnect, next generation processors and improved Reliability, Availability, and Serviceability (RAS)
 - Essentially instead of parallel bus backplanes, uses high-speed serial communication and advanced switch technology within and between modules, plus redundant power, etc

ATCA Crate

- ATCA used for e.g. SLAC LUSI (LCLS Ultra-fast Science Instruments) detector readout for Linac Coherent Light Source hard X-ray laser project
 - Based on 10-Gigabit Ethernet backplane serial communication fabric
 - 2 custom boards

January 30, 08

SiD Meeting SLAC

- Reconfigurable Cluster Element (RCE) Module
 - Interface to detector
 - Up to 8 x 2.5 Gbit/sec links to detector modules
- Cluster Interconnect Module (CIM)
 - Managed 24-port 10-G Ethernet switching
- One ATCA crate can hold up to 14 RCE's & 2 CIM's
 - Essentially 480 Gbit/sec switch capacity
 - SiD needs only ~ 320 Gbit/sec including factor of 4 margin
 - Plus would use more than one crate (partitioning)

11

Reconfigurable Cluster Element (RCE) Boards

- Addresses performance issues with offshelf hardware
 - Processing/switching limited by CPU-memory sub-system and not # of MIPS of CPU
 - Scalability
 - Cost
 - Networking architecture
- Reconfigurable Cluster Element module with 2 each of following
 - Virtex-4 FPGA
 - 2 PowerPC processors IP cores
 - 512 Mbyte RLDRAM
 - 8 Gbytes/sec cpu-data memory interface
 - 10-G Ethernet event data interface
 - 1-G Ethernet control interface
 - RTEMS operating system
 - EPICS
 - up to 512 Gbyte of FLASH memory

Rear Transition Module

Reconfigurable Cluster Element Module

ALL ACEION

Cluster Interconnect Module

- Network card
 - 2 x 24-port 10-G Ethernet Fulcrum switch ASICs
 - Managed via Virtex-4 FPGA
- Network card interconnects up to 14 in-crate RCE boards
- Network card interconnects multiple crates or farm machines

Summary

- KPIX system can also be used for warm machine with some modest mods within KPIX
- Event data rate for SiD can be handled by current technology, e.g. ATCA system being built for LCLS
 - SiD data rate dominated by noise & background hits
 - Can use standard ATCA crate technology with e.g. existing SLAC custom cluster elements and switch/network modules
- No filtering required in DAQ. Could move event data to online farm/off-line for further filtering/analysis
 - Still: investigate filtering in ATCA processors