

The MAPS ECAL

SID Workshop SLAC January 2008

Marcel Stanitzki STFC-Rutherford Appleton Laboratory

Y. Mikami, O. Miller, V. Rajovic, N.K. Watson, J.A. Wilson University of Birmingham J.A. Ballin, P.D. Dauncey, A.-M. Magnan, M. Noy Imperial College London J.P. Crooks, M. Stanitzki, K.D. Stefanov, R. Turchetta, M. Tyndel, E.G. Villani STFC-Rutherford Appleton Laboratory

Sensor specifications

- 50x50 micron cell size
- Binary Readout (Comparator)
- 4 Diodes for Charge Collection
- Time Stamping with 13 bits (8192 bunches)
- Hit buffering for entire bunch train
- Capability to mask individual pixels
- Threshold adjustment for each pixel
- ⇒Usage of INMAPS (deep-p well) process

The ASIC1 sensor

- Received in late July
- 0.18 microns CMOS
 INMAPS Process
- 168x168 Pixels
- 8.2 million transistors
- Test structures
- A lot of bond pads

ASIC1 cont'd

- Two pixel architectures
 - Pre-Sampler
 - Pre-Shaper
- And for two capacitor configurations
 - As there were some issues with the circuit simulation
- 4 flavors of pixels
- 4 different processes
 - INMAPS 0.18 micron with 5/12 micron Epi
 - INMAPS 0.18 micron no deep p-well with 5/12 micron Epi
- Have about 300 chips

Illustrating ...

Sensor testing

- Started testing program using several set-ups
 - Laser setup
 - analog characteristics
 - Pixel tests
 - Source runs with ⁵⁵Fe and ⁹⁰Sr
 - Test beam

The pixel test structures • Si D

- 2 pixels with analog output (A & B)
- 1 Pixel not active & read out (C)
- Used for
 - Measurement of charge spread
 - Cross-check device simulations
 - Analog front-end testing
 - Gain calibration (to be done)
- All results are **PRELIMINARY**

С	
В	
Α	

No deep p-well ...

Area scanned by Laser

Deep p-well results (I) • Si D •

Marcel Stanitzki

9

Deep p-well results (II) • Si D

Marcel Stanitzki

Science & Technology Facilities Council Rutherford Appleton Laboratory

Deep p-well results (III) $\mathcal{S}_i \mathcal{D}$

⁵⁵Fe Spectrum

 55 Fe gammas (5.7 KeV) :1620 electrons signal Done using the analog test pixels: Gain \sim 127 $\mu V/e$

Results from Source runs SiD

Cont'd

Rutherford Appleton Laboratory

Thermal Properties

Orientation: Chip top view

Testbeam Setup

- TestBeam at DESY
 - 3-6 GeV electrons
- 4 Sensors
 - mounted in mechanical structure
 - 1 DAQ board per Sensor
 - Readout via USB 2.0
- Comment:
 - Got an window of opportunity : Do it next week or in 9 month

The DAQ

Science & Technology Facilities Council Rutherford Appleton Laboratory

Marcel Stanitzki

•

First Hits

Some Comments

• The CHIP

- worked stable and reliable
- We are still analyzing the data (~100 GB)
- So no quantitative statements yet
- DAQ
 - Smooth
 - basically no downtime
- We can qualitatively say
 - The chip works

Marcel Stanitzki

The Future...

- Given the STFC's statements on the ILC ...
 - It is fair to say, that the future of the UK-ILC program isn't bright
 - "We expect to put in a new proposal next year to continue the MAPS programme despite the recent UK announcement"
 - Everything else is not clear yet

