

SiD Engineering Status Report

Kurt Krempetz

SiD Engineering Group

Engineers	Physicists
– ANL	
 Victor Guarino→Hcal 	
– FNAL	
 Bob Wands→FEA 	Bill Cooper
Joe Howell	
 Kurt Krempetz→Integration 	
 Walter Jaskierny→Solenoid Electrical 	
– PSL	
 Farshid Feyzi→Muon Steel 	
– SLAC	
 Jim Krebs→EndDoors 	Marty Breidenbach
 Marco Oriunno→Ecal 	Tom Markiewicz
 Wes Craddock→Solenoid 	
– RAL	
 Andy Nichols→Tracking 	Phil Burrows
– LAPP	
Claude Girard	Yannis Karyotakis
 Franck Cadoux 	
 Nicolas Geffroy→Hcal 	

Subsystem Liaisons to the Engineering Group

- Vertex→ Bill Cooper
- Silicon Tracker → Tim Nelson
- Ecal→Marty Breidenbach
- Hcal→Andy White
- Muons→Henry Band
- Forward→Bill Morse
- MDI→Tom Markiewicz

Recent Work

- Solenoid Conductor
- Vertex Detector Mechanics
- Forward Region
- Magnetic Field Calculations
- Hcal
- Ecal
- Beam Tube

• D · BH Curve Effects on SiD Field Calculations (Bob Wands-Fermilab)

- Seven BH curves were used:
 - Three of these curves (KJS, LDJ, and MS10360) are from the Minos steels
 - One curve (CMS) is from the CMS endwall steel
 - One curve (CDF1020) is from the CDF solenoid
 - One curve (Mod-Kilmer) is from early Minos R&D
 - One curve (MCM) is from the Michigan Cyclotron
 Magnet steel used in the KTeV dipole

BH Curves for Various Magnet Steels

• $\int_{i} D^{A}xial$ decentering due to differences in BH between steel flux return components (positive toward endwall)

BH of Barrel and One Endwall	BH of Other Endwall	Axial Decentering (tonnes)
CMS	Endwall missing	14000
CMS	KJS	-177
CMS	MS10360	34
CMS	LDJ	-570
CMS	Mod_Kilmer	415
CMS	CDF1020	166
CMS	МСМ	315

Fringe Fields - Comparison of Results for Three Curves

Conclusions

- BH of steel has small effect on axial decentering due to misalignment (~10%)
- BH differences in endwalls could cause large decentering forces even if no misalignment is present, though calculation here is extremely conservative
- BH of steel has negligible effect on central field, and field uniformity in tracking volume
- Largest effect of BH is on fringe fields (~100% between best and worst curves at some locations)
- Characterization of BH at high fields are important for calculations because steel is heavily saturated

Study of a new Hcal geometry-(Nicolas Geffory-LAPP)

...motivation: « cracks » in the calorimeter

Kurt Krempetz

Study of a new Hcal geometry...

- 2nd version -

Examples of tilt level as a function of the tangent circle radius

Proposal of Hcal assembly

Proposal of Hcal assembly

Detail of a detection layer

A detection layer ("sandwich part") consists in a chamber rigidified with two thin steel plates.

Kurt Krempetz

Proposal of Hcal assembly

The whole system (Hcal & Ecal) slides inside the magnet thanks to rails.

Kurt Krempetz

> Several designs of Hcal are possible to avoid cracks

Finite Element Analyses will be performed to confirm the feasibility of such designs

Physic simulation is necessary to optimize the mechanics

Parameters Si/W ECAL Barrel Marco Oriunno-SLAC

• Si D

requires only 2 masks for silicon and 8 masks for the kapton

Irregular geometry on one edge

Countersunk Flat Head Screw ISO 7046-1 - M2 x 6 - 4.8 - H

Beam Tube From LumiCal to LumiCal (Cooper/Krempetz-Fermilab)

Kurt Krempetz

Beam Tube External Pressure Calculations Small Cone

• D · Beam Tube External Pressure Calculations

Collapse Pressure Compari	sons							
ASME calclulates pressure	which is all	ows by code	e (includes s	safety factor)				
Collapse Pressure is calculated by Formulas from "Formulas for Stress and Strain" by Roark and Young								
FEA is collapse pressure ca	alculated by	Linear Buc	kling Analys	is in IDEAS				
	ASME	Collapse	FEA	Collapse /ASME	FEA/Collap	se		
Vertex Section	9.64E+05	4.07E+06	4.20E+06	4.22E+00	1.03E+00			
Start of Small Cone	1.98E+06	6.54E+06	2.19E+07	3.30E+00	3.35E+00			
End of Small Cone	2.11E+05	1.75E+06	2.19E+07	8.30E+00	1.25E+01			
Start of Large Cone	8.60E+05	2.19E+06		2.55E+00				
End of Large Cone	2.92E+05	7.97E+05		2.73E+00				
Straight Section to LumiCal	1.62E+05	4.77E+05		2.94E+00				

Beam Tube Under its Own Weight Simply Support at Ends

JI-DEAS 12 NX Series m1: PPD TDM : 1 MODELFILES : C:\PPD IDM PPD94388\KJK Buckling.mf1 [Layout: C:\UGS\ideas12\ideas\classicIdeas.xml] 🗔 File Edit View Options Tools Window Help N/mm^2 I-DEAS Visualizer 1.76E+02 Display l 1.67E+02 Beamtube meshfiner 1.59E+02 B.C. 1, STRESS_3, LOAD SET 1 1.50E+02 C:\PPD_IDM_PPD94388\KJK_Buckling.mfl STRESS Von Mises Unaveraged Top shell 1.41E+02 Min: 2.94E-02 N/mm^2 Max: 1.69E+02 N/mm^2 1.32E+02 B.C. 1, DISPLACEMENT_1, LOAD SET 1 1.23E+02 C:\PPD_IDM_PPD94388\KJK_Buckling.mfl 1.15E+02 DISPLACEMENT XYZ Magnitude Min: 1.11E-03 mm Max: 1.21E+01 mm 1.06E+02 Part Coordinate System 9.69E+01 8.81E+01 7.93E+01 7.05E+01 6.17E+01 5.29E+01 4.41E+01 3.53E+01 2.65E+01 1.77E+01 8.84E+00 2.94E-02

Proposed Global Parameters

Detector	Radius (m)	Axial (z) (m)		
	Min	Max	Min	Max
Vertex Detector	0.01	0.06	0.00	0.18
Central Tracking	0.21	1.25	0.00	1.61
Endcap Tracker	0.00	0.49	0.85	1.37
Barrel Ecal	1.27	1.41	0.00	1.79
Endcap Ecal	0.21	1.27	1.65	1.79
Barrel Hcal	1.42	2.37	0.00	2.74
Endcap Hcal	0.21	1.41	1.79	2.74
Coil	2.46	3.27	0.00	2.74
Barrel Iron	3.28	5.92	0.00	2.75
Endcap Iron	0.21	5.92	2.75	5.39

• Si D •

SiD Engineering Group-Estimated Future Involvement

Engineers	Physicists
– ANL	
 Victor Guarino→Limited 	
– FNAL	
 Bob Wands → Slighty Reduced 	Bill Cooper
 Joe Howell→Greatly Reduced 	
 Kurt Krempetz→Slightly Reduced 	
 Walter Jaskierny→Slightly Reduced 	
– PSL	
 Farshid Feyzi→Reduced 	
– SLAC	
 Jim Krebs→Greatly Reduced 	Marty Breidenbach
 Marco Oriunno→Remains Same 	Tom Markiewicz
 Wes Craddock → Remains Same 	
– RAL	
 Andy Nichols→Limited 	Phil Burrows
– LAPP	
Claude Girard	Yannis Karyotakis
Franck Cadoux	-

• Nicolas Geffroy→Remains Same