

SiLC: What's new???

on behalf of SiLC Collaboration

- Latest Advances on:
- R&D sensors
- R&D Electronics
- Mechanics
- Tests

Perspectives 08-09

Progress made by SiLC since: BILCW'07 review & Update by A. Ruiz's at ALCPG-FNAL Oct 07

Aurore Savoy-Navarro, LPNHE/CNRS-IN2P3 SiD Meeting January 2008

R&D on sensors

- R&D on electronics
- Mechanics developments
- Test beam

Sensors tested with detailed QA control (HEPHY+IEKP) laser alignment New technological approach: 3D Planar µstrips:

Edgeless (hermetic), Low V, Lower Thickness, Faster, Rad hard, expected 03/08

The biaising schemes for the ILC tracker's edge active strip Detector (left) punch through, and (right) FOXFET The detector Is biaised from one corner of the active edge (green) *SiD Meeting, January 2008, SiLC* And a lot more also on pixels R&D

R&D on sensors

R&D on electronics: HEAD ON THE SITR-130_128

- Mechanics developments
- Test beams

Functionalities to be integrated

- Full readout chain integration in a single chip, 512 or 1024 ch in 90nm
 - Preamp-shaper
 - Sparsification
 - Sampling
 - Analog event buffering:
 - On-chip digitization

Trigger decision on analog sums 8-deep sampling analog pipe-line Occupancy: 8-16 deep event buffer

- 10-bit ADC
- Buffering and pre-processing: Centroids, $\chi 2$ fits, lossless compression&error codes
- Calibration and calibration management
- Power switching (ILC duty cycle))

	Amplifiers: - 30 mV/MIP over 30 MIP range	
	Shapers: - Two ranges: 500ns–1µs, 1µs-3µs	
	Sparsifier: - Threshold the sum of 3-5 adjacent channels	
	Samplers: - 8 samples at 80ns sampling clock period	
	- Event buffer 8 deep	
	Noise baseline: Measured with 180nm CMOS:	
	375 + 10.5 e-/pF @ 3 µs shaping, 210µW power dissipati	on
	ADC: - 10 bits	
	Buffering, digital pre-processing	
	Calibration	
	Power switching can save a factor up to about 100	6
n la	nuary 2008 Sil C	

Front-end architecture

Charge 1-30 MIP, Time resolution: BC tagging 150-300ns 80ns analog pulse sampling

Technology: Deep Sub-Micron CMOS 130-90nm

Preamplifier-shaper performances

Measured gain - linearities

Preamp output

IN2P3

SiD Meeting, January 2008, SiLC

Sampling rate = 12 MHz; Readout rate = 10 KHz

ADC TEST

11

SiTR-130_V1 test-beam response

Signal to Noise ratio from beam-tests

20 oct 02h12m00s.txt

This CMOS 130nm design and first test results demonstrate the feasibility of a highly integrated front-end for Silicon strips (or large pixels) with

- DC power under 600μ W/ch
- Silicon area under 100 x 500 μ^2 /ch

New version: SiTR-130_128

Floorplan

- 128 channels in 130nm CMOS Improved shaper (reduced noise)
 Improved pipeline Chip control Digital buffer
 Processing for :

 Calibrations
 - Amplitude,time χ2 estimate, centroids
 - Raw data lossless compression Power cycling using DACs controlled current sources

Tools

- Cadence DSM Place and Route tool
- Digital libraries in 130nm CMOS available
- Synthesis from VHDL/Verilog
- SRAM
- Some IPs: PLLs

Needs for a mixed-mode simulator AMS designer under installation at LPNHE

SiTR-130_128 block diagram (B.U., LPNHE, LAPP)

Expected to be sent to foundry April 15

14

- R&D on sensors
- R&D on electronics
- Mechanics developments
- Test beams

Both prototypes include working on new modules starting with lighter module structure at first.

Test with of the Silicon Envelope with LCTPC in 2008 at DESY: Modules(HEPHY), structures(IEKP) final electronics (LPNHE)

Alignment: 2-fold approach

and CNM/CSIC

AMS-like approach:

baseline version: Minimum set of changes for any SiLC sensors For instance, for the new HPK sensors

Implemented:

 \bullet Ø~10 mm window where AI back-metalization has been removed

Suggested (not cost effective for small batches):

- Strip width reduction (in alignment window)
- Alternate strip removal (in alignment window)

R&D on transparent Silicon µstrip sensors:

- Together with IMB-CNM (Barcelona) design, build and test new IR-transparent Silicon microstrip detectors.
- Consider option of aluminum electrodes or transparent electrodes

Realistic sensor simulations: very interesting studies/results

Test bench in development and alignment prototype for TB2008 SiD Meeting, January 2008, SiLC

order transmission

- R&D on sensors
- R&D on electronics
- Mechanics developments

• Test beams

SiLC: IEKP Karlsruhe, LPNHE Paris, CU Prague, IFCA Santander, Torino INFN & Uni, and collaboration with Maps telescope: DESY & Geneva U. and CERN support (Silicon Lab)

Arrival and setting up of the test at SPS West area, October 10-22, 2007

Photographs by F. Kapusta

Test running and data taking

Photographs by F. Kapusta

The beam is on : the VA1-3CMS is responding S/N $\simeq 15$

Analysis by W. Dasilva and F. Kapusta

Results with the new HPK + SiTR-130

HPK 130 nm procedure results for a good responding strip

Black : Beam Off - Red : Beam On - S/N \sim 18

Results with the new HPK + SiTR-130

HPK 130 nm : 2 strip clustering - S/N \sim 23

SiLC R&D Collaboration

Launched January 2002, Proposal to the PRC May 2003, Report Status May 2005, ILC tracking R&D Panel at BILCW07 February 2007, next PRC Status report April 08 *This brief review is an attempt to present all the SiLC collaborators hard work results: Many thanks to all of them!*

Eudet's telescope: what we had...

We had an analogue telescope (demonstrator version) Chip size 7x7 mm² 256x256 pixels, 30 µm pitch

Replacement mechanics to position sensors precisely

EUDRB (INFN): online pedestal&noise calc cluster finding FPGA remote config ADC RO modes: Full frame Zero suppression

Trigger Logic Unit (TLU) Simple integration of DUT into telescope Event number and time stamps from events Provides handshake between scin. Trigger, and DUT using trigger/busy signals Custom telescope DAQ Data collected in custom format, converted to LCIO/Marlin format Analysis using grid

HW SETUP

- Linux PC to control TLU, uses USB
- TLU accepts NIM inputs

(trigger logic set by a software mask)

- TLU talks to SiLC using a LVDS on RJ45
- TSCOPE software running in MAC (hut).
- Ethernet communication with VME (hall), running LynX. VME houses EuRDB
- Paris win-pc for SiLC RO and FPGA programming
- Gigabit HUB in experimental area
- Gigabit HUB in the hut, connected to CERN ethernet

TB Menu

- Approx. 228k events: 77k ped, 99k SiLC+TLU, 53k SiLC+TLU+Telescope
- 47 SiLC files, 77 telescope files (limited to 890 entries each)
- 25 files with SiLC + TLU+telescope
- 22 files with SiLC alone (TLU in internal trigger mode)
- Hadrons=120 GeV pions
- Runs with different collimator settings to reduce hit multiplicity (detector occupancy)
- Logbook available as an excel worksheet under google docs

The DAQ for the VA1

(slides by J. David)

The DAQ for the 130 nm

(slides by J. David)

The trigger

The TLU sends a simple trigger to the first acquisition board of the 130nm, which transmits it to the 2 others cards.