Status and Plans of the RPC-DHCAL Project

José Repond Argonne National Laboratory

SLAC SiD Meeting, SLAC, January 28 – 30, 2008

Quick overview of the project

Active medium

Resistive Plate Chambers operated in avalanche mode

Electronic readout

Based on DCAL chip (64 channel, digital readout)

Complete readout chain contains Pad- and Front-end boards Data concentrators Data collectors Timing and trigger modules

Prototypes

Assembled 9 – layer calorimeter with 2304 readout channel Plan to build 1 m³ physics prototype with 400,000 channels

Measurements

Cosmic Rays Particle beams at FNAL \rightarrow Vertical Slice Test Noise rates Charge injection Long-term studies

Recent activities I: Analysis of error modes

Since Fermilab run in Summer 2007

Mined data for possible errors or malfunctions

Discovered

14 different errors Some fatal (data corrupted), some recoverable Error rate of the order of 5% in 8-layer stack (~2,000 channels)

Improvements to grounding

Eliminated all but one error mode

Last error

Missing data records Rate <1% of the events Suspect link between DCON and DCOL → detailed studies ongoing

Recent activities II: R&D in preparation of construction

Development of simplified pad- and front-end boards

Previous boards

4 and 8 layer boards with blind vias ~\$1000/board

New boards

2/4 and 8 layer boards without blind vias ~\$100/board Boards in hand

If successful might incorporate Data Concentrator on Front-end board

Final design needs final DCAI chips

Larger RPCs for prototype section

Previous chambers

Used in Vertical Slice Test $20 \times 20 \text{ cm}^2$

Production chambers

32 x 96 cm² Glass samples in hand Channels to be delivered in 2 weeks Absolute last developments before construction

Last modifications to DCAL chip before production

50% loss of data when output buffer empty

Not a problem in triggered mode Problem identified, corrected and simulated

Remove internal test lines

Trivial change already implemented

Removal of asynchronous clear

Needs some design time (~1 week)

Problem with slow control readout

Trivial change already implemented

Additional prototyping NOT required

Need 6,000 chips Production typically 6 months Critical path

Recent activities III: Analysis of Muon Data

Two independent analyses

a) Track segement based

Can be applied to hadronic showers

- b) Track reconstruction based
- \rightarrow Results from both very consistent

Data sample

- Two different RPC designs

Default (2-glass) Exotic (1-glass)

- Various High Voltage settings
- Various Threshold settings
 - \rightarrow About 5,000 10,000 events/setting

Number of chambers in the stack	High Voltage in kV	Threshold in DAC counts
8	6.2/5.9	30
		50
		70
9	6.3/6.0	30
		70
		110
		150
		210
7	6.4/5.8	30
		50
		70
		110
		150
		190
		210
8	6.5/6/2	30
		120
		210

Clustering

Build clusters in each layer from touching cells (one side in common) Determine center of gravity of cluster: x, y

Tracking

Require clusters with 1or 2 hits only (this cut still under study) Check for aligned clusters in 2 layers

a) above and below the layer being investigated

- b) 2 layers directly above if lowest layer in stack
- c) 2 layers directly below if highest layer in stack

Hit distribution for individual chambers

Run 211 – HV = 6.3/6.0 THR = 110

Run 213/4 – HV = 6.5/6.2 THR = 30

Exotic chamber

RPC5 – Has lower efficiency (← grounding problem) RPC1 – Needs lower HV RPC0 – Needs higher HV RPC7 – Exotic design

Threshold in DAC counts

Distribution of hits/no hits

 \rightarrow Exclude RPC0, RPC4, RPC5

Higher hit multiplicity at low/high x

(later traced back to office clips holding front-end board onto the chamber)

Paper draft written

Calibration of a Digital Hadron Calorimeter with Muons

Burak Bilkid, John Butlerb, Gary Drakea, Eric Hazenb, Jim Hoffe, Andrew Krepsa, Ed Maya, Georg Mavromanolakisc, Edwin Norbeckd, José Reponda, David Underwooda, Lei Xiaª

> Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, U.S.A. ^bBoston University, 590 Commonwealth Avenue, Boston, MA 02215, U.S.A. *Fermilab, P.O. Box 500, Batavia, IL 60510-0500, U.S.A. ^dUniversity of Iowa, Iowa City, IA 52242-1479, U.S.A.

Abstract. The calibration procedure of a finely granulated digital hadron calorimeter with Resistive Plate Chambers as active element is described. Results obtained with a stack of nine layers exposed to the Fermilab test beam are presented.

Keywords: Calorimetry, Linear Collider, Particle Flow Algorithms, Resistive Plate Chambers. PACS: 29.40.Vj, 29.40.Cs, 29.40.Mc, 29.40.Wk

INTRODUCTION

Should be submitted within two weeks

Particle Flow Algorithms (PFAs) attempt to measure all particles in a jet (originating from the interaction point) individually, using the detector component providing the best momentum/energy resolution. Charged particles are measured with the tracking system (except for high momenta, where the calorimeter provides a better measurement), photons are measured with the electromagnetic calorimeter (ECAL), and neutral hadrons, i.e. neutrons and $K_L^{0^{\circ}s}$, are measured with both the ECAL and the hadronic calorimeter (HCAL). The energy of a jet is reconstructed by adding up the energy of the individual particles identified as belonging to the jet. The major challenge in this approach to the measurement of jet energies lies in the identification of energy deposits in the calorimeter belonging to either a charged or neutral particle. Hence the requirement of calorimeters with very fine segmentation of the readout. Additional details on PFAs and the requirements for calorimetry can be found in references [1,2].

In this context this paper reports on the development of a finely granulated HCAL using Resistive Plate Chambers (RPCs) as active medium. In preparation for the construction of a larger prototype module, a stack of nine chambers was assembled and exposed to the muons, electrons and pions of the Fermilab test beam. Following the description of a general calibration procedure for such calorimeters, the measurements performed with the broad-band muon beam are described in detail.

Recent activities IV: Cosmic Ray Data

Run Number	# of events	Empty events	Out of time	More than 1000 hits	Dead cells
460	32539	2939	49	1	12
461	39633	3787	208	0	11
462	37602	3338	13	0	11
463	34473	3191	21	0	11
464	34365	3059	52	0	11
465	35398	3192	54	0	11
466	31253	2885	56	0	11
467	38744	3426	32	0	11
468	35495	3190	21	1	11
469	35731	3172	12	0	11
Total	355233	32179	518	2	11

Run 468:0 Event 31412

Time: 4371500

Noticed correlation in efficiencies and pad multiplicities

Barometric pressure at Calumet Harbor, IL

Error bars on pressure set to 0 for fit

Error bars on pressure set to 0 for fit

Large statistics – Detailed x-y Maps

Recent activities V: Analysis of Positron Data

Two independent analyses

- a) Study of energy responseb) Study of longitudinal development
 - \rightarrow Results still very preliminary

Data sample

- Data at 1, 2, 4, 8, and 16 GeV

Monte Carlo simulation

- Needs calibration constants from $\mu\text{-runs}$
- Needs careful implementation of pad multiplcities
- Current comparison based on assumptions and ignoring details

Energy response and resolution

Recent activities VI: Measurement of Noise Rates

Typically 20 – 30 Hz/chamber at a threshold of 30 (default is 110) Two chambers somewhat noisy (100, 500 Hz/chamber)

 \rightarrow Probability of a noise hit in 1 m³ stack P ~ 10⁻²/event

Environmental impact

Noise rate depends on gas flow (accident!) Noise rate (might) depend(s) on p,T,H → Needs detailed studies, will acquire weather station

RPCs are very quiet

Recent activities VII: Charge Injection

DCAL chip has internal charge injection capability

Range < 10 fC, which is unfortunately a bit small

Excellent diagnostics tool

Developed necessary software to perform chage injection runs

Recent activities VIII: Additional work

New DAQ software

Based on CALICE framework Most of it is written, being tested

Development of E-log for future DAQ runs

Adopted module originally developed for ATLAS

• //			ELOG F	RPC - Mozilla	Firefox		
<u>F</u> ile	<u>E</u> dit <u>V</u> iew <u>G</u> o <u>B</u> ookma	arks <u>T</u> ools	<u>H</u> elp				
4	• 🛶 • 🛃 🙆 😭 🌘	🔊 - 🕅 h	ttp://local	host:8080/RP0	C/?last=7	🖸 🗸 🕼 Go 🔀	
		EN	-				
At	las Collaboration	JEAS	ELOG R	PC			
demo	dhcal RPC						
DH	ICAL RPC Developmen	t, Page 1	of 2			FLOG	
Now	Find Select Import Co	onfig Help					
New Pind Select Import Comp Trep							
Full	Summary Inteaded				Last week		
	Date	Author	Type	Category	Subject	Text	
55	Wed Jan 16 16:00:35 2008	ils	Routine	General	runEnd	End dhcCommics run200031, 30000 events	
54	Wed Jan 16 16:00:30 2008	ils	Routine	General	runStart	Start dhcCospics run200031.	
53	Wed Jan 16 16:00:29 2008	jls	Routine	General	runEnd	End dhoQinj run200030. 2000 events	
52	Wed Jan 16 15:59:44 2008	jls	Routine	General	runStart	Start dhcQinj run200030.	
51	Wed Jan 16 15:59:07 2008	jls	Routine	General	runEnd	End dhcCommics run200029. 30000 events	
50	Wed Jan 16 15:59:02 2008	jls	Routine	General	runStart	Start dhcCommics run200029.	
49	Wed Jan 16 15:59:01 2008	jls	Routine	General	runEnd	End dhcQinj run200028. 639 events	
48	Wed Jan 16 15:58:46 2008	jls	Routine	General	runStart	Start dhcQinj run200028.	
47	Wed Jan 16 15:57:16 2008	jls	Routine	General	runEnd	End dhcCosmics run200027, 30000 events	
46	Wed Jan 16 15:57:12 2008	jls	Routine	General	runStart	Start dhcCosmics run200027.	
45	Tue Jan 15 16:32:55 2008	jls	Routine	General	runEnd	End crcNoise run200026. 28513 events	
44	Tue Jan 15 16:32:16 2008	jls	Routine	General	runStart	Start crcNoise run200026.	
43	Tue Jan 15 16:19:12 2008	jls	Routine	General	runEnd	End dhcQinj run200025. 500 events	
42	Tue Jan 15 16:19:00 2008	jls	Routine	General	runStart	Start dhcQinj run200025.	
41	Tue Jan 15 16:14:38 2008	jls	Routine	General	runStart	Start dhcQinj run200024.	
41	142 3411 15 10111150 2000						

Module	Purpose	Status	Comment
DaqBusAdapter	Use HAL CAEN Linux bus adapter	Modified	
DaqConfiguration	Customize settings for run types	Modified	Needs additional customization
DaqRunType	Define run types	Modified	Added run type for DHC operation
SubRecordType	Defines types of subrecords	Modified	Added record types to configure and readout DHC
DhcConfiguration	Load configuration records	Coded	Need method to input parameters from ecternal file
DhcbeConfigurationData	Defines structure of DCOL configuration	Coded	
DhcFeConfigurationData	Define structure of DCAL front end configuration	Coded	
DhcEventData	Define structure of front end hit data	Coded	
DhcReadoutConfigurationData	a Define structure of settings for readout options	Coded	Needs additional customization
DhcSerialCommand	Template to build command sent to FE chip	Coded	
DhcSeriaHheader	Builds structured message sent to FE chips	Coded	
DhcReadout	Manages the configuration and readout of DCOL	Coded	
DhcVmeDevice	Executes the DCOL access via HEL library	Coded	Not tested
DhcLocation	Define physical location of DCOL	Coded	
DhcLocationData	Template to associate DCOL data with location	Coded	
TtmConfigurationData	Define structure of TTM configuration	Coded	
Ttmreadout	Manages configuration and readout of TTM	Coded	
TtmVmedevice	Executes the TTM access via HAL library	Coded	Not tested
TtmLocation	Defines physical location of TTMs	Coded	
TtmLocationData	Template to associate TTM data with location	Coded	
RunLogger	Create automatic ELOG entries at transitions	Coded	

High voltage supplies and control

Noise rates with Droege and Lecroy units similar Computer controlled system for one of the systems will be developed

Summary of status

Vertical Slice Test

Was very successful Proves concept of DHCAL with RPCs Validates entire electronic readout chain Several publications in the next few months

Further developments since VST

New Pad- and Front-end board designs Study of error modes (almost complete) Detailed long-term studies (ongoing)

Two μ 's separated by 1.4 cm

We are ready for the construction of the 1 m³ physics prototype

Under all circumstances

Will complete ongoing studies Will publish results from Vertical Slice Test

Assuming availability of funds

Will complete changes to DCAL chip and will produce chips Will start assembly of large chambers Will complete design of integrated Front-end boards and Data Concentrators Will produce entire readout system

 \rightarrow ready for test beams in early 2009

Assuming some funds are available

Will consider additional iteration of DCAL chip (larger range of Q_{inj}) Will complete design around new DCAL chip and perform all necessary tests

Assuming no funds available

Will consider returning to FNAL test beam with 'perfect' system Will look for other things to do...