

In the frame of the French contribution to **XFEL** project,

LAL is in charge of "in-kind" delivery of 832 input couplers

Input coupler on cryomodule

3 Main difficulties:

- Industrial production of coupler parts
- Assembly in clean room
- RF conditioning

Expertise required from industry in the couplers production

Special austenitic stainless steel

S. Prat

4th SCRF meeting

Jan 18th 2008

DESY

INTERFACES OF POWER COUPLER WITH OTHER WP's

WP 1 - Waveguide

- 1.1 Waveguide flange, bolts and nuts
- 1.2 Kapton window

WP 3 - Cryomodule

- 3.1 Flange on vacuum vessel, gasket, bolts
- 3.2 Coupler supports (left & right), bolts
- 3.3 Connection of Cu braids from 80K thermal shield, bolts
- 3.4 Connection of Cu braids from 4K thermal shield, bolts
- 3.5 4 holes in 4K interface for assembly rods
- 3.6 Super insulation

WP 8 - Cavity & vacuum

- 8.1 Cavity flange, gasket, bolts & nuts
- 8.2 Coupler vacuum pumping port, gasket, bolts & nuts

WP 9 - Cavity string assembly

- 9.1 Two holes in big cold flange
- 9.2 Clamp for cold bellows

WP 28 – Control system

- 28.1 Connector for motor, end switches, PT100
- 28.2 Arc detector
- 28.3 HV connector
- 28.4 e- pickup
- 28.5 2 sensors PT100 in 80K zone

WP 34 - Utilities

- 34.1 Two N2 cooling ports
- 34.2 Environmental conditions: T, P, H, radiations

1 - LAL conducted industrialization studies to clarify the mass production of couplers Award of 3 contracts in March 06: ACCEL, e2v, TOSHIBA System Design Review: 2 full days for SDR each review at - functional analysis each contractor Preliminary Design Review: PDR - feasibility of the manufacturing processes - samples for parts and joining Critical Design Review: - detailed drawings - organization of the mass production CDR - risks analysis - samples of Cu plating and TiN coating Final Project Review: 2008 - deliver 2 prototypes - volume manufacturing plan - costs estimate for XFEL couplers S. Prat 4th SCRF meeting Jan 18th 2008 DESY

1. Analysis of documents

- Shipping documents
- Shock data (if any)
- Material certificates
- Production data book

2. Visual inspection:

- Examination of shipping container and packing
- How couplers are mounted on test stand
- External aspect of couplers, cleanliness, finger prints
- Identification numbers
- Inspection of transmission rod, WG interface box, motorized tuning
- Remove test support from shipping container
- Install on special clean room cart

3. Bring test stand in clean room:

- Air shower
- In ISO 6: wipe with alcohol-soaked cloth all external surfaces
- In ISO 4:
 - o Connect pumping accessories to the 2 warm ports
 - o Connect pumping accessories to the cold valve
 - Connect successively each of the 3 ports to external vacuum pump and proceed with He leak test, then close valves on vacuum
- Fxit clean room

Outside clean room:

- Install test support in baking oven
- connect warm side & cold side to 2 turbo pumps
- Start turbo pumps, wait 10 min \rightarrow ~ 10⁻⁵ mbar
- Open the 2 valves
- Vacuum pump until 10^{-7} to 10^{-8} mbar

In situ baking:

- Ramp up to 130°C in 1 day
- Bake at 130°C during 3 days
- Ramp down to ambiant 0.5 day
- Connect and start: 3 vacuum gages, 3 ion pumps, RGA on cold side
- Close valves and remove turbo pumps
- Exit baking oven

6. Mount WG interface boxes and capacitors

7. Mount motorized transmissions

Operational check

8. RF tuning:

- Connect coaxial transition adapters on input and output waveguides
- Connect pulse generator
- Tune both couplers to optimum frequencies
- Dismount transition adapters

- 9. Connect couplers to waveguide and to end load
 - Connect diagnostics to interlock electronics

10. Start conditioning process

- Record vacuum gauges & electronic activity versus time, RGA
- Ramp up RF power for each pulse length → record duration

S. Prat

- 11. Disconnect from waveguide
- 12. Disconnect from pumps, dismount pumping adapters
- 13. Dismount motorized transmissions & interface boxes
 - Visual inspection, record on inspection table
- 14. Dismount 2 warm assemblies from test stand
 - Visual inspection, record on inspection table
 - Control of some critical dimensions
 - Control of angular alignment
 - Measurement of rugosity on Cu coated surface
- 15. Dismount 2 cold assemblies from test stand
 - Visual inspection, record on inspection table
 - Control of some critical dimensions
 - Control of angular alignment
 - Measurement of rugosity on Cu coated surface

Visual inspection of warm and cold assemblies

Outside

- identification
- conformance of geometry
- cleanliness
- surface finish
- ceramic aspect (absence of scratches, broken edge, stain)
- brazes aspect (good filling, no spill)
- welds aspect (absence of holes, corrosion)
- centering
- bellows (no excessive deformation, no dents)
- CF flanges (no damage)
- edges (good chamfers or rounded edges, sharp edge when needed)

Inside

- · cleanliness
- end of inner conductor (sharp edge)
- inner bellows (no excessive deformation, no dents)
- pumping holes (rounded edges)
- RF surface finish (roughness value, absence of scratches, stains)
- Ceramic aspect (absence of scratches, broken edge, stain)
- joints aspect (full penetration, smoothness, no peaks)
- Cu coating aspect (smoothness, color, coating limit, no flakes, stains, corrosion)
- rounded edges (for RF needs)

Inspection points on warm assembly

Inspection points on cold assembly

Visual inspection of other assemblies

Push rod assembly

- conformance of geometry
- · cleanliness
- · surface finish
- welds aspect (absence of holes, corrosion)
- centering
- bellows (no excessive deformation, no dents)
- CF flange (no damage)
- HF contact springs
- · end axle
- edges (good chamfers or rounded edges)

- identification
- · conformance of geometry
- · cleanliness
- surface finish (absence of scratches, broken edges, corrosion)
- edges (good chamfers or rounded edges)

Capacitor

- · Quality of assembly
- · cleanliness
- Peek covers (machining quality, gluing to Kapton film)
- · Outer & inner ring
- Test record

Tuning actuator

- identification
- · conformance of geometry
- · conformance of components
- · cleanliness
- fixtures

S. Prat 4th SCRF meeting

Jan 18th 2008

DESY

→ Final rating of the prototypes

This evaluation form is a systematic method of evaluation of the quality of a pair of input couplers.

Every listed detail must be inspected and rated with penalty points as follows:

- satisfactory: O point

- small defect, no consequence on performance: 1 point

- big defect with consequence on performance: 2 points

- big defect with consequence on operation: 3 points

The final result is the sum of all penalty points

Pt N°	Detail to inspect	Good	Small defect	Big defect	Description	Points
	External aspect, surface quality, cleanliness					
	Identification: where, type, quality					
1	Knife edge quality					
2	Quality of contact to capacitor, fixation					
3	Braze joint quality					
4	Joint quality if any, regularity, smoothness					
5	Cu rings: centering, shape, smoothness					
6	Braze: regularity, smoothness, centering, metallization					
7	Ceramic: color, stains, no chips					
8	::					
9						

2 - LAL has gained experience in Assembly and Conditioning

Test station at LAL, sized for 50 couplers /year:

- clean room with 2 zones:

ULTRA PURE WATER

- · class 1000: wash and rinse
- · classe 10: dry, bake, assemble
- RF Modulator and 5 MW Klystron

Project of Clean room layout for 200 couplers / year (at industry location)

S. Prat

He

Special clean room equipment

Cleaning with detergent in US bath

Rinsing tank (LAL design)

Industrial washing / drying machine (Used at DESY for cleaning of UHV parts)

Bake out tent

3 - LAL has been working several years to optimize the RF conditioning time

Now: Total duration for conditioning + tests \rightarrow 40h / pair if OK

S. Prat 4th SCRF meeting

Jan 18th 2008

DESY

Scenario for couplers production - WP5 of XFEL project

Principles:

- 2 industrial contracts: each for 416 couplers + (n/2) spares
- Production and assembly in specific clean room at each industry
- Responsibility of industry includes RF conditioning
- · RF conditioning: 1 single station at LAL

Different phases in couplers production & assembly

Phase	Actor	Control	Where
Couplers fabrication	Industries	LAL Inspector on site	2 industrial locations
Operations in clean room: Washing, rinsing, drying, baking, He test		LAL Inspector on site	2 industrial locations
RF Conditioning & reception tests		LAL	LAL
Dismount from test stand Pack in 2 envelopes		LAL	LAL
Storage until needed	LA	LAL	
Transport to cryomodule assembly location	LA	SACLAY	
Assemble to cavities and to cryomodules	×	DAPNIA	SACLAY

Necessary infrastructure at LAL for XFEL couplers

40 m² Clean room for:

- · dismounting warm & cold parts from test stand
- · packing in double bags filled with N2
- · treatment of couplers which failed conditioning

Storage space:

- shelves for 200 couplers
- prepare to deliver batches to SACLAY

S. Prat

4th SCRF meeting

Jan 18th 2008

DESY

STORAGE RACK FOR 100 COUPLERS