

Development of a new Beam Position Monitor for FLASH, XFEL and ILC Cryomodules

Claire Simon, Michel Luong, Stéphane Chel, Olivier Napoly,
Jorge Novo, Dominique Roudier CEA/Saclay/DAPNIA
Nelly Rouvière IPN/Orsay
Nicoleta Baboi, Dirk Noelle, Nils Mildner DESY

ILC SCRF, DESY, 17 January 2007

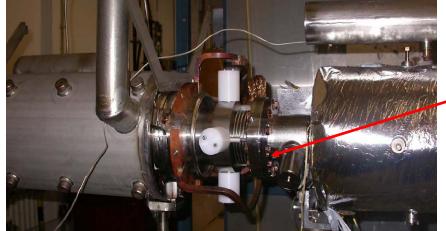
Re-entrant Cavity BPM

• It is arranged around the beam tube and forms a coaxial line which is short circuited at one end.

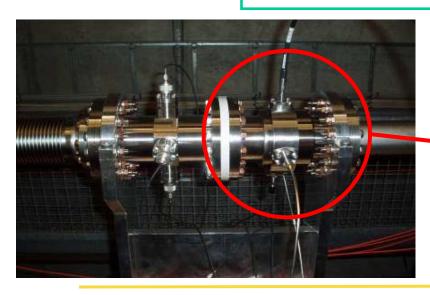
saclay

The cavity is fabricated with stainless steel as compact as possible :

170 mm length (minimized to satisfy the constraints imposed by the cryomodule)


78 mm aperture. 170 Feedthroughs are positioned in the Cu-Be RF contacts welded in re-entrant part to reduce the magnetic the inner cylinder of the cavity loop coupling and separate the main to ensure electrical conduction. RF modes (monopole and dipole) Twelve holes of 5 mm diameter drilled at the end of the re-entrant part for a more effective cleaning (Tests performed at DESY). Signal from one pickup

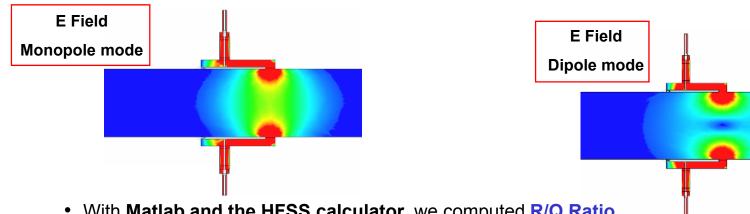
Re-entrant Cavity BPM



saclay

Re-entrant cavity BPM located at cryogenic temperature inside the cryomodule (ACC1).

Re-entrant cavity BPM installed in a warm section on the FLASH linac


RF Characteristics of the BPM

saclay

RF characteristics of the cavity: frequency, coupling and R/Q

Eigen modes	F (MHz)		Q _i		(R/Q) _I (Ω) at 5 mm	(R/Q) _I (Ω) at 10 mm
	Calculated with HFSS in eigen mode	Measured in the tunnel	Calculated with HFSS in eigen mode	Measured in the tunnel	Calculated	Calculated
Monopole mode	1250	1255	22.95	23.8	12.9	12.9
Dipole mode	1719	1724	50.96	59	0.27	1.15

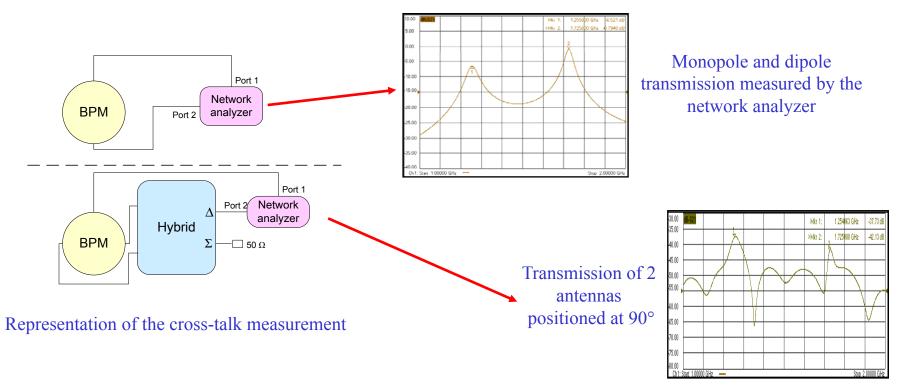
• With Matlab and the HFSS calculator, we computed R/Q Ratio.

R: the Shunt impedance and Q: the quality factor

$$\frac{R}{Q} = \frac{V^2}{2 * \pi * f * W} \qquad V =$$

$$V = \left| \int E(z) * e^{jkz} dz \right| \quad \text{and} \quad k = w/c$$

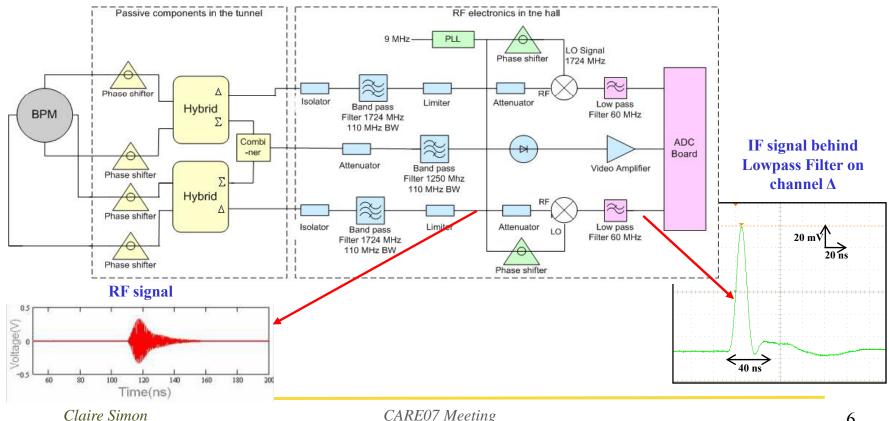
Cross Talk of the Cavity BPM



• Due to tolerances in machining, welding and mounting, some small distortions of the cavity symmetry are generated.

A beam displacement in the 'x' direction gives not only a reading in that direction but also a non zero reading in the orthogonal direction 'y'.

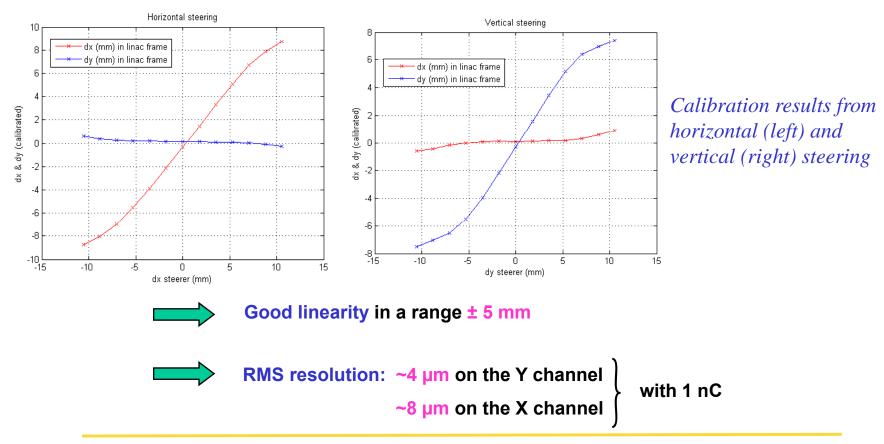
This **asymmetry** is called **cross talk**.


From those measurements, the **cross-talk isolation** value is estimated around 33 dB.

Signal Processing

- \succ The rejection of the monopole mode, on the Δ channel, proceeds in three steps :
 - a rejection based on a hybrid coupler having isolation higher than 20 dB in the range of 1 to 2 GHz.
 - a frequency domain rejection with a band pass filter centered at the dipole mode frequency. Its bandwidth of 110 MHz also provides a noise reduction.
 - a synchronous detection.

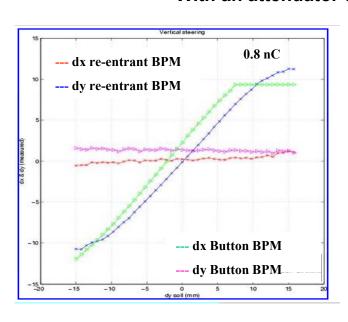
Beam tests on the BPM (1)

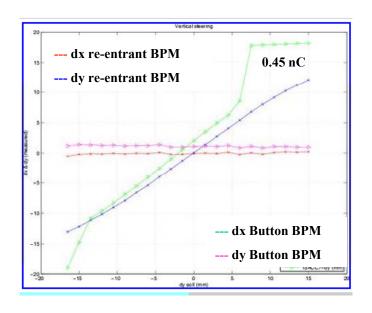


saclay

❖ To calibrate the BPM:

- Beam is moved with one steerer.
- Calculate for each steerer setting, the relative beam position in using a transfer matrix between steerer and BPM (magnets switched off to reduce errors and simplify calculation).
- Average of 500 points for each steerer setting.




Beam tests on the BPM (2)

saclay

With an attenuator 6 dB on each channel

Good linearity: ± 10 mm @ 0.8 nC

± 15 mm @ 0.45 nC

Resolution measurement:

correlation of the reading of one BPM in one plane against the readings of all other BPMs in the same plane (using linear regression).

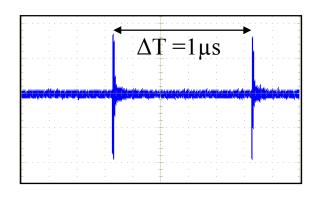
Charge	Resolution Re-entrant	Resolution Re-entrant+ 6 dB attenuator
1.0 nC	~ 4 µm	
0.8 nC		~ 12 µm
0.5 nC	~ 11.8 µm	~ 21 µm
0.2 nC	~ 30.1 µm	~ 55 µm

Time Resolution

œ

➤ Damping time is given by using the following formula :

$$\tau = \frac{1}{\pi * BW}$$

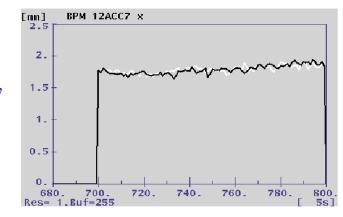

saclay

$$BW = \frac{f_d}{Q_{ld}}$$

fd: dipole mode frequency

Q_id: loaded quality factor for the dipole mode

> Considering the system (**cavity + signal processing**), the **time resolution** is determined, since the rising time to 95% of a cavity response corresponds to 3τ.



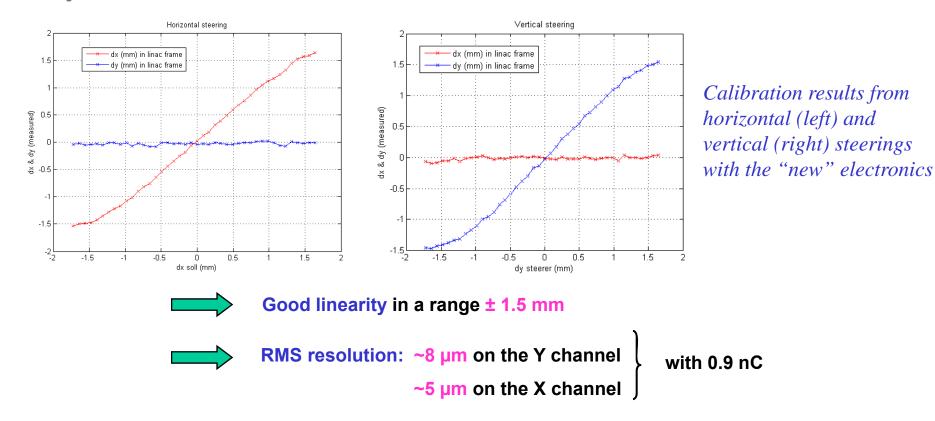
RF signal measured at one pickup

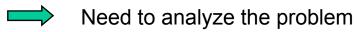
	Damping Time cavity only	Time resolution cavity + electronics
ВРМ	9.4 ns	40 ns

Time resolution for re-entrant BPM

100 bunches read by the re-entrant BPM

Possibility bunch to bunch measurements


Last beam measurements

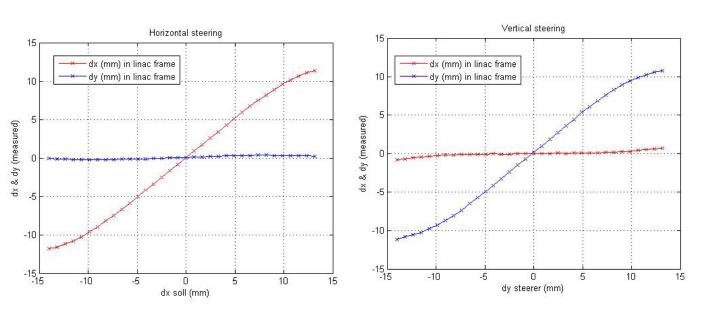


saclay

- ❖ Measurements carried out with an amplifier added in the electronics box.
 - Should have reduced the dynamic range to have a better resolution

Resolution with this amplifier is similar to the resolution without amplifier

Last beam measurements



❖ Adjustment of the RF phase because the 9 MHz reference signal was changed

saclay

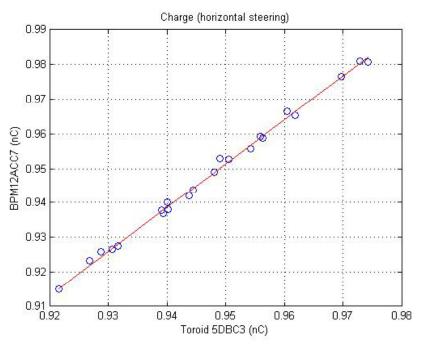
Checking of the measurements carried out in last August.

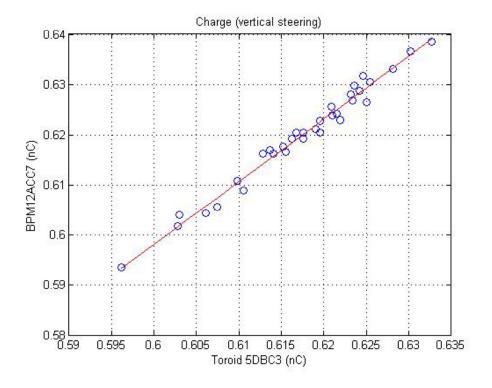
Calibration results from horizontal (left) and vertical (right) steering

Good linearity in a range ± 12 mm

RMS resolution: ~7 µm on the Y channel ~8 µm on the X channel

with 0.9 nC


Last beam measurements



Calibration of the charge

saclay

Summary

- High resolution re-entrant cavity BPM features:
 - > Effective in clean environment
 - Operation at room and cryogenic temperature
 - Large aperture of the beam pipe (78 mm)
 - Position resolution around 4 μm measured with a measurement dynamic range around ± 5 mm
 - > Time resolution around 40 ns
 - > A new prototype will be produced in 2008 with modified mechanics
 - > ~ 30 BPMs will be installed in the XFEL cryomodules.
- ❖ This BPM appears as a good candidate for being installed in the ILC cryomodules.
- ❖ More work is needed to obtain < 1µm resolution