

LCFI Vertex Software Update

Ben Jeffery Oxford University (on behalf of the LCFI collaboration)

What's in the package?

Ten modular parts (Processors in Marlin):

In run order:

- TrueJetFlavour
- RPCut
- PerEventIPFitter
- ♦ ZVTOPZVRES
- ♦ ZVTOPZVKIN
- FlavourTagInputs
- FlavourTag
- VertexCharge
- ♦ LCFIAIDAPlot
- NeuralNetTrainer

- Determine MC flavour and charge of reconstructed jets
- Select ReconstructedParticles based on Track parameters, number of hits etc.
- Find the event IP
- Find secondary vertices topologically
- Find secondary vertices kinematically
- From vertices and tracks calculate discriminating variables for the neural net
- Calculate network output (tag value)
- Calculate charge of decaying hadron (next release)
- Create AIDA file with many diagnostic plots (next release)
- Train networks

The example steering files combine these to make the Hawking's bc tagging procedure *(LC-PHSM-2000-021)* parameters for these from previous Brahms study.

Documentation is in "LCFIVertex/doc" in the form of doxygen generated web pages, the Processor class pages are a good starting point. There are also several extra pages of explanatory prose under "related pages"

Code and docs at: <u>http://ilcsoft.desy.de/portal/software_packages/lcfivertex/index_eng.html</u>

Recent Developments and Features

- Now at version v02-02, core algorithms stable.
- Development focuses on secondary tools to remove dependence on MC information and provide a tuned set of code parameters

Increase realism – proper treatment of effects added by full MC

- Recently Added
 - Diagnostics
 - Kalman Fitter
 - Full MC Impact parameter fitting
 - Material Interactions
- Upcoming:
 - Removal of K_{s} , Λ and photon conversions
 - Parameter Tuning
 - Training of flavour tag based on full MC
 - Additional documentation
 - Paper describing package

Diagnostics

(Victoria Martin)

Purity of reconstructed track-vertex association (%)

MC track Reconstructed track-vertex association							
origin	Two-vertex case			Three-vertex case			
	Pri.	Sec.	lso.	Pri. S	ec. To	er. Iso	D.
Primary	90.5	1.61	27.7	97.2	4.66	2.43	46.5
B decay	7.2	48.6	35.1	1.91	74.9	9.99	24.5
D decay	2.28	49.8	37.2	0.935	20.5	87.6	29

- Plot Processor produces AIDA file of vertexing and IP fitting results, flavour tag input distributions and outputs
- Tables of purity of track to vertex allocation

Kalman Fitter

- Original vertex fitter was quickly developed and intended to be a placeholder.
- New Kalman filter based on one developed for the CBM experiment (S. Gorbunov and I. Kisel, CBM-SOFT-note-2006-001)
- Orders of magnitude faster!
- Better looking pull distributions.
- Now default for IP Fitting

Impact parameter fitting

- Important input to flavour tag is "joint probability" roughly the probability that all tracks originate at the IP.
- Need to know the impact parameter distribution of tracks truly from the IP.
- Results so far have used hard-wired distributions from Fast MC
- New processor developed to derive parameters from fit to a set of jets

Impact parameter fitting

• Performance unchanged but flavour tag needs to be retrained to see full effect.

 $K_{S^{\prime}}\,\Lambda$ and photon conversions

- Need to be removed before vertexing
- For initial testing photon conversions deactivated in simulation and K_{s} , Λ products removed by checking MC PDG of parent.
- Processor to reconstruct and remove tracks from both sources in development

- Fit all opposite charge track pairs
- Select based on chi-squared and kinematic fit

Material Interactions

- Material interactions need to be suppressed
- Not yet a full treatment but allows impact to be quantified
- Currently achieved by cut on track production point
- Quick-fix hardwired cut now replaced by cut from GEAR xml detector description
- Not ideal –

 e.g. can't cope with vertex detector end caps in SiD but possible to modify GEAR to cope with this

Track production points in UDS events

Parameter Tuning

b taq

b-c tag

c tag

- 18 cut values + 5 vertex finder parameters + other parameters
- Defaults from Fast MC and GEANT3 based BRAHMS MC used so far
- Detailed exploration of parameter space underway, initially concentrate on tagging performance as a function of individual parameters.

purity

0.94

 Preliminary results for IP fit track selection produced so far

Cross concept

- Package currently runs only in the Marlin (ILD/EU) framework
 - Usage direct from Java/org Icsim (JNI) on hold due to loss of JNI expert.
- But through the magic of LCIO can be driven with input from org lcsim (SID/US) and Jupiter (ILD/Asia)

Possible as geometry information is limited to description of material location for fiducial cut.

Using the package with input from org lcsim

- Only need to install Marlin + LCFIVertex (MarlinReco not needed)
 - Easiest with install script -
 - http://www-zeuthen.desy.de/lc-cgi-bin/cvsweb.cgi/ilcinstall/?cvsroot=ilctools
- Currently only tested with org.lcsim.mc.fast.tracking.MCFastTracking and perfect PFA
- Use head version of org.lcsim generates LCRelations needed to use MCParticle information

Minimal changes to example steering needed:

- Rename input collections to match those generated by org.lcsim
- Supply GEAR file for fiducial cut (barrel only 😕)
- Examples of steering for org lcsim and GEAR file at: <u>http://www-pnp.physics.ox.ac.uk/~jeffery/sid_steering</u>
- SiD support not as tested and extensive as that for ILD. But guaranteed to improve as some package developers are performing SiD analyses!

Vertex display

 Whether the reconstruction was performed in org.lcsim, Marlin or a mix the physics analysis can be performed in JAS and visualised using WIRED4:

org.lcsim tracking/Marlin vertexing vertices in the most recent release of WIRED4

Future Developments

- Looking forward to using full realistic tracking with SiD
- Full tracking should "drop in"
- Experience from MarlinReco integration shows that adequate time and effort working closely with tracking experts may be needed

Summary and Benchmarking studies

- Package maturing and ready for benchmark studies
- Several benchmarking studies with SiD and the vertex package are underway some of which will be presented tomorrow.
- These push the package into challenging 6-jet and soft jet events
- t tbar W_{tb} anomalous coupling
- Higgs self coupling
- Sbottom production

Asymmetry study

6. $e^+e^- \rightarrow c\bar{c}, b\bar{b}$, at $\sqrt{s}=0.5$ TeV;

Benchmark Process

 $A^{LR}_{FB}(c)$ & $A^{LR}_{FB}(b)$

Sensitive to Z', leptoquarks, R-parity violating scalar particles, and extra spatial dimensions - *S.Riemann (LC-TH-2001-007*)

Example sensitivity to large extra dimensions, λ is a model parameter

Asymmetry study

Note the sensitivity is at large θ – very vertex detector geometry dependent Status:

Extra dimensional model set up in WHIZARD Setting up asymmetry calculation and fitting using MC level input