
Status of Tracker Digitization and Hit Reconstruction

SiD <u>Workshop</u>

RAL - April, 14 2008

 \odot

A Little Caffeination

A little help for those who know some C++, but not used to Java-speak:

- Class: same as C++... some data and some methods that operate on it to do something
- SubClass extends BaseClass
- Interface: defines a set of methods for a class, but no method bodies (no "implementations": i.e. it only defines what kinds of actions can be done)
- Class implements Interface: means Class has all the methods that are defined for Interface (with method bodies: i.e. it actually **does** the actions defined by the interface).
- Minimal interfaces are good... allow one to easily define which class gets used without changing much code
 Class Kitchen

```
Interface Coffemaker
{
    public Coffee brew(CoffeeBeans beans);
}

Class MrCoffee implements Coffeemaker
Class LaMarzocco implements Coffeemaker

Class LaMarzocco implements Coffeemaker
{
    Coffeemaker _coffeemaker = new LaMarzocco();
}
```

Overview

Detector modeling / simulation

Silicon simulation / digitization

- SimTrackerHits (energy depositions as generated by GEANT)
- RawTrackerHits (single-channel ADC values from detector readout)
- Hit clustering / reconstruction
- TrackerHits (clustered raw hits w/ position measurements)

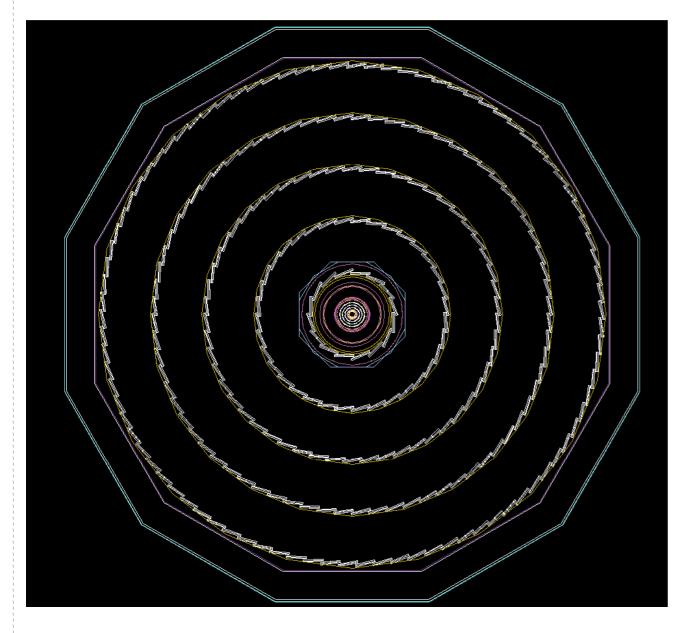
Pattern recognition / fitting

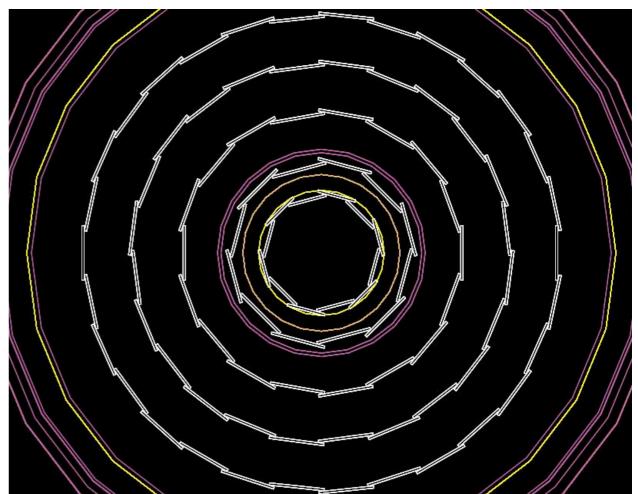
➡ Tracks (see next talk!)

Detector Modeling

Compact description for planar barrel trackers - SiTrackerBarrel

Accommodates all layouts that have been discussed (including double-sided)

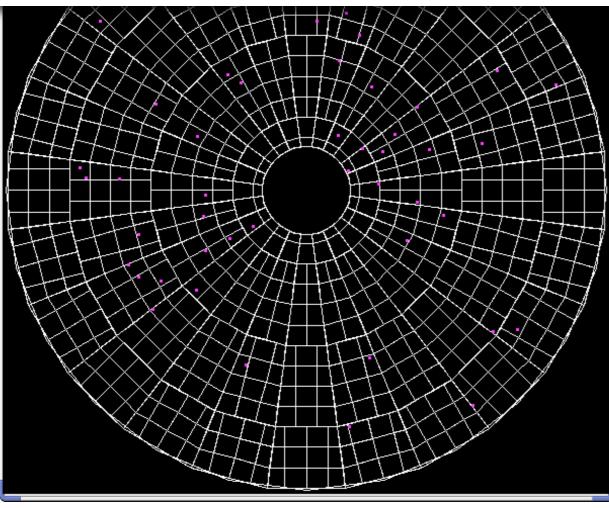

Specific models exist for outer tracker and vertex detector of baseline SiD

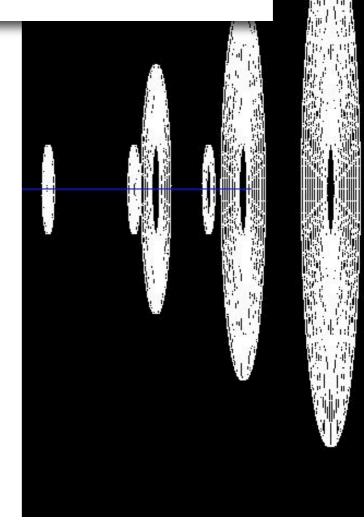

Compact description for planar endcap trackers - SiTrackerEndcap

- Can simulate any wedge-type geometry with any stereo angle (e.g. 90-degree)
- Can be easily modified to to include tilts/overlaps for more realistic model
- Specific "straw layouts" exist for endcap/forward trackers and vertex detector

Models are currently being updated to latest layouts and material estimates: these are drop-in replacements for the current sid01 tracking and vertexing

SiTrackerBarrel Example


SiTrackerEndcap Example


Any wedge-type layout can be coded in a few, human-readable lines:

<!-- Endcap Tracker Layers -->

```
<layer id="4" inner_r="185.0" outer_r="478.0" inner_z="626.0" thickness="10.0" nwedges="24">
<module_parameters r_size="85.333" phi_size_max="80" />
```

</layer>

 $- \bigcirc$

Detector Descriptions

One representation for GEANT4 simulation,

org.lcsim.geometry.compact.converter.lcdd.SiTrackerBarrel and SiTrackerEndcap convert the compact.xml to lcdd for SLIC (GEANT4)

and a second, consistent one for reconstruction, along with framework for managing the detector description: (inspired by Gaudi, ATLAS)

- org.lcsim.detector.converter.compact.SiTrackerBarrelConverter and .SiTrackerEndcapConverter convert compact.xml to objects in org.lcsim detector description and geometry framework
 - org.lcsim.detector kernel of detector description and geometry framework
 - org.lcsim.detector.solids geometry objects and operations
 - org.lcsim.detector.identifier identification of elements

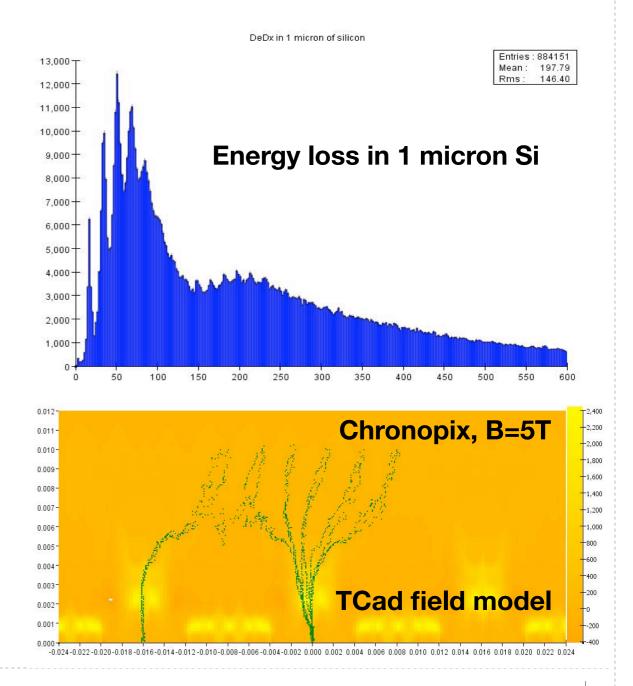
Silicon Simulation/Digitization

Description of the attributes of silicon sensors (in GeomConverter):

- org.lcsim.detector.tracker.silicon
 - SiSensor describes a generic silicon detector
 - DopedSilicon and BiasSurface define attributes determining charge generation/drift
 - SiStrips and SiPixels that implement SiSensorElectrodes on the bias surfaces

Charge deposition in sensors (in Icsim):

- org.lcsim.contrib.SiStripSim
 - CDFSiSensorSim implements SiSensorSim: improved CDF deposition model
 - fast, adequate for thicker silicon sensors of outer tracker


Detailed Pixel Simulation

CDF deposition model inaccurate for thin pixel sensors: new model by Nick Sinev

Full implementation of shell effects

Models arbitrarily complex pixel structures

- Drifts individual electrons: detailed results but very slow when there is region with no electric field (~1 second/hit)
- Produces a 3D lookup grid from detailed simulation of single pixel. Grid then used for fast simulation of physics events
- Integration of Nick's work into the hit reconstruction framework is a priority

Digitization and Readout

ReadoutChip interface, outputs RawTrackerHits

- Implementation can be as generic or detailed as desired
- An example implementation of ReadoutChip, KPiX, is complete
 - register-level simulation of KPiX chip
 - includes encoding and decoding of ADC values (range bit, etc...)
 - full, optimized noise simulation when attached to a StripClusterer: only generates noise hits that will result in clusters

-

TrackerHit Class Heirarchy

BaseTrackerHit (no-frills implementation of TrackerHit)
 TransformableTrackerHit (+ability to transform coords)
 SiTrackerHit (+references to sensors and electrodes)
 SiTrackerHitStrip1D (+info about unmeasured coordinate)
 SiTrackerHitStrip2D (+crossing-angle dependent position)
 SiPixelHit

Nothing is lost when these types are persisted

TrackerHitType

Encodes information about TrackerHit into an integer type that is persistable in LCIO, everything else one could want is regenerated on the fly after instantiation.

```
public class TrackerHitType
    public enum CoordinateSystem
        GLOBAL,
        SENSOR,
        UNKNOWN;
    }
    public enum MeasurementType
        STRIP 1D,
        STRIP 2D,
        PIXEL;
    private static class Decoder
        private static TrackerHitType decoded(int raw type)
        private static int encoded(TrackerHitType type)
    }
}
```

Hit Reconstruction Framework

- Class TrackerHitDriver extends Driver, makes use of four algorithm classes:
 - interface SiDigitizer (SimTrackerHits to RawTrackerHits)
 - interface StripClusterer (RawTrackerHits to SiStripHits1D)
 - interface PixelClusterer (RawTrackerHits to SiPixelHits)
 - interface StripHitCombiner (pairs of SiStripHits1D to SiStripHits2D)
 - User can configure TrackerHitDriver to use any algorithm classes that implement these very minimal interfaces. A set of four default implementations are provided:
 - RawTrackerHitMaker implements SiDigitizer
 - StripHitMaker implements StripClusterer
 - PixelHitMaker implements PixelClusterer
 - StripHit2DMaker implements StripHitCombiner
 - All hits are placed back on detector readouts and written to event header

TrackerHitDriver_User

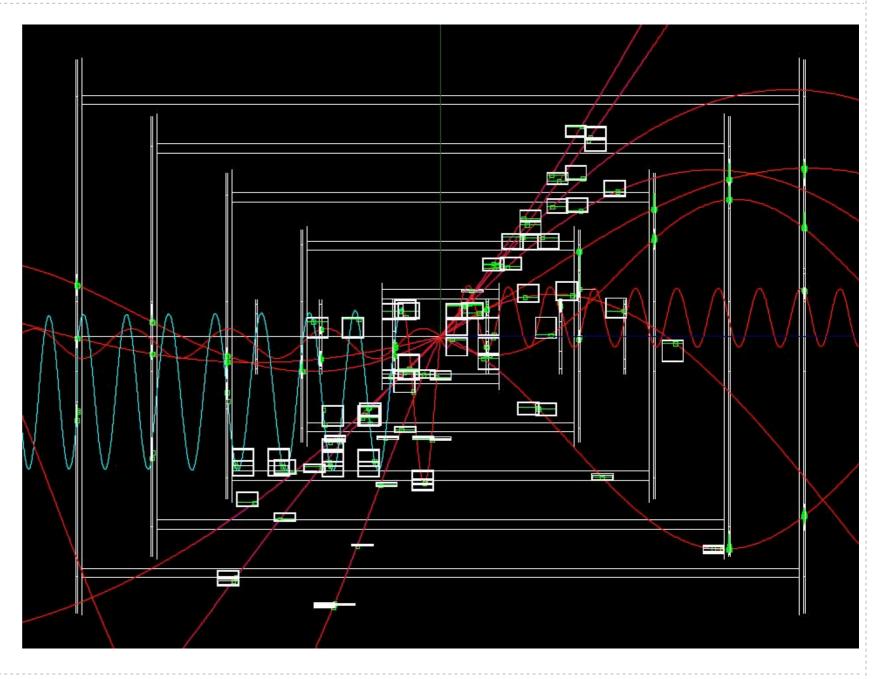
- Example driver for configuring and running TrackerHitDriver
- Does default end-to-end digitization and hit reconstruction of any SimTrackerHits on SiSensors
- ♣ TrackerHitDriverUser_Test; runs on Z-pole→uds data
 - ♣ ~2.5 seconds/event on my laptop
 - ♣ ~15000 sensors, ~30×10⁶ channels
 - 🔒 ~2500 RawTrackerHits
 - 🐣 ~200 SiTrackerHitStrip1D
 - 🔒 ~40 SiTrackerHitStrip2D

```
public class TrackerHitDriver_User extends Driver
{
    TrackerHitDriver _trackerhit_driver;
    /** Creates a new instance of TrackerHitDriver_User */
    public TrackerHitDriver_User()
    {
        _trackerhit_driver = new TrackerHitDriver();
        _trackerhit_driver.addReadout("SiTrackerBarrel_RO");
        _trackerhit_driver.addReadout("SiTrackerEndcap_RO");
        super.add( trackerhit driver );
    }
}
```

}

}

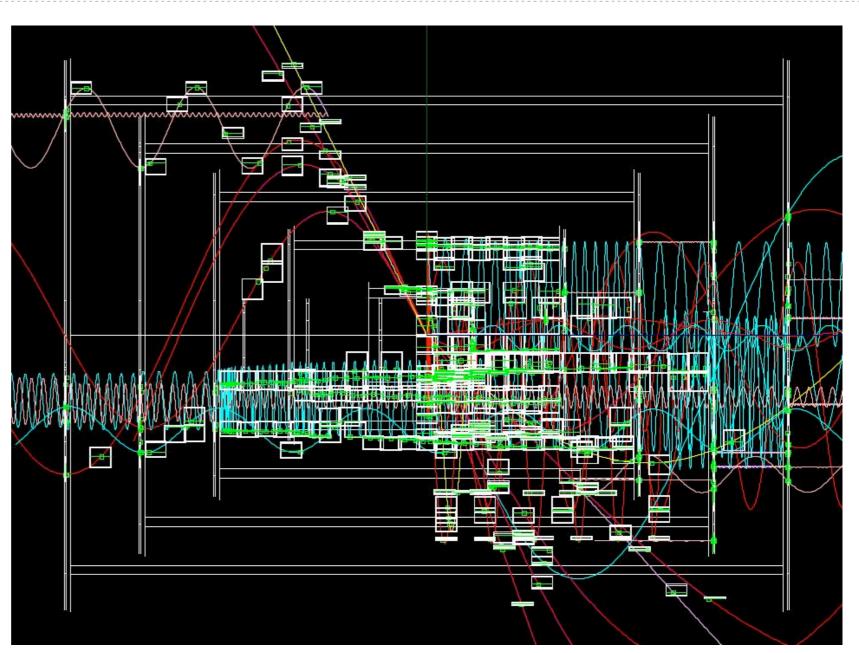
$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$


How Hard is It?

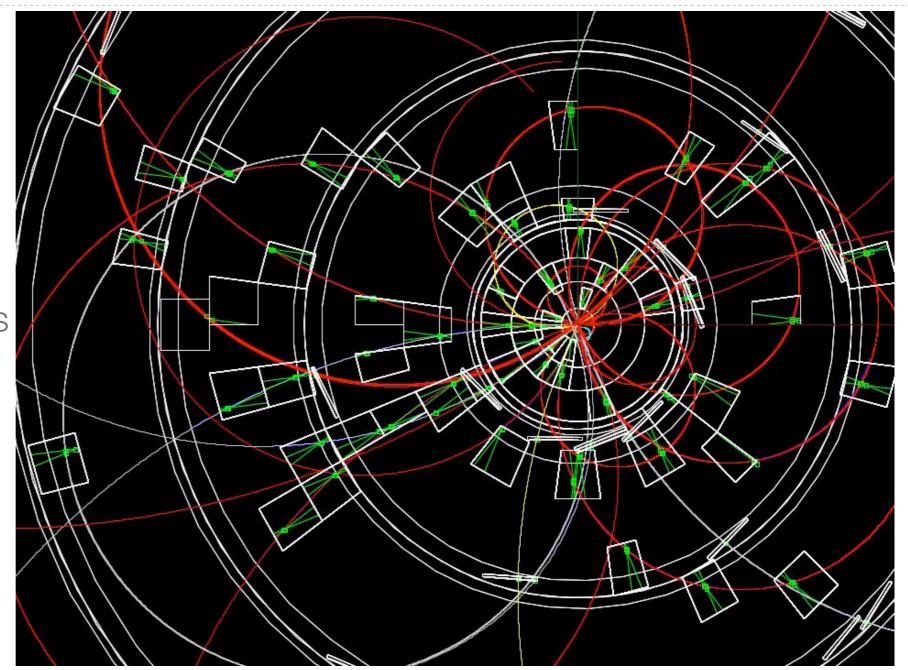
Get/update code from cvs

- If you don't already have the source distribution, see:
 <u>http://confluence.slac.stanford.edu/display/ilc/Building+org.lcsim+software</u>
- If you already have it, then...
- 🔓 cvs update GeomConverter
- 🔒 cvs update lcsim
- GeomConverter/build.sh
- 🔒 lcsim/build.sh
- download http://www.lcsim.org/test/lcio/pythiaZPoleuds-0-1000_SLIC-v2r4p2_geant4v9r1p0_LCPhys_SiTrackerTest01.slcio
- 👶 open JAS3
- File -> New Wired4 View
- File -> Load org.lcsim.contrib.SiStripSim.TrackerHitDriver_User
- File -> Open File -> data file downloaded above
- Start looking at events with hits!

Looking at Events


- For clarity, event viewer shows only hit modules without any module substructure
- Strip hits are shown as the appropriate line segment
- Now possible to turn on all particles creating SimTrackerHits, colorcoded by particle type

Looking at Events


- On rare occasions it can be a real zoo!
- This is clearly the worst of 100 events looked at
- Per-sensor occupancies in densest regions are still of order 1

The blue are muons

Looking at Events

Typical forward event showing SimTrackerHits and reconstructed stereo strip hits

Conclusions

- A complete and easy to use geometry, digitization and reconstruction architecture is in place for silicon tracking detectors in org.lcsim and ready **now** for simulation **and** reconstruction of tracking in fully detailed tracker models
- Improved tools for pixels in soon. Older models/tools can still be used, but as with tracking tools, the new tools are leaps and bounds better than the old in both fidelity and utility in performing tracking reconstruction.
- The to-do list is getting very, very short:
 - Updated detector model by ~May 1, followed by generation of data samples
 - Release of fully tested pixel reconstruction by ~May 15, pending attempts to integrate Nick's pixel simulation with the code
- Please try the code and help us improve it!

The attention now must shift to track pattern-recognition and fitting...

20

A Quick Advertisement

Nothing about hardware??

Some new developments will be covered in the talk on *KPiX* in the calorimetry session tomorrow morning.