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Vertex Detector - $iD -
SiD Vertex Concept

— High magnetic field allows for small inner radius for the inner layer
— Barrel and disk system
* Provides good forward tracking

—

* Always at least one barrel hit/track
* Unique to SiD

AAAN
AN

— Integrated mechanical design with ‘ M
tracker

But we don’t o I
— Understand optimization of the disks

— Have functional pattern recognition or physics simulation

— Understand power and interconnection issues

We do want to preserve technology options for the sensors, which
limits detail in a final design




Vertex Subsystem
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Coverage of some areas is spotty because

— Sensor R&D groups tend to focus on
detector technology rather than the
detector concept

— Tools are not available
— Manpower is not available
— Funding is not available

VTX Groups

SLAC
FNAL

UK (Bristol,
Oxford, RAL)

MPI
Prague
Oregon

« Add or direct effort into more experiment-specific or generic (non-

sexy) problems

« While keeping the R&D work active and well-supported
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Vertex System Design Issues © §i
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Mechanical Design
— Series of meetings had been running organized by Bill and Joel.
— Barrel geometry is specified
— Disk design is still at an early stage
* Mass constraints
« Power constraints
— Conceptual design for CF support cylinder
« Hope to build a prototype at FNAL

— Many mechanical issues depend on sensor technology, electronics
design - these have to wait.

There is a solid base overall mechanical design which can
accommodate various sensor and readout options.

Joel will discuss this in more detaill
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Summary of Hardware Efforts + $iD -
« Sensor R&D « Other R&D
— UK - LCFI - UK
- CPCCD , ISIS CCD * Support structures
— FNAL  Mechanical
« 3D Electronics, SOI - FNAL

» Mechanical Design

- MPI, Prague » Serial Power
« DEPFET detectors - Thinning
— Oregon — MPI
- CMOS MAPS « Thinning and support
— SLAC
« Electronic system
integration

Not covered - other powering schemes, pulsed power studies, interconnections
Understanding of power => understanding of mass distribution




Basic Parameters

IP resolution will be determined
by mass, inner radius, and pixel
size. More complex questions
include:
— How resolution is degraded
with angle in the forward
direction

— What are the pattern recognition
constraints?

Optimizations
— Mix in decreased time resolution
technologies in outer layers
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IP Resolution, 1 GeV tracks

——varying resolution
—#—varying radiation length

—&—Varying inner radius

Hit resolution (micron) or RL x 10~-3 or IR (mm)

Parametric simulation assuming:
* 0.1% RL per layer

* 5 micron resoluton

* 1.4 cm inner radius

Varying each parameter

— Vertex pixel size optimization (power/pixel size tradeoffs)
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Disks

[ S
« Assuming pixels for the forward region
— What are we asking of the forward disks \ /
 |P resolution - dominated by barrels / |
« Pattern recognition
— Integration with forward silicon design
« Determines momentum res., angle
measurement
— Pixel size
* Maximum size -> minimum power
« Support and geometry
Vertex barrel ~ 150,000 mm? 3D DBl-based concept
Vertex Disks ~ 120,000 mm?2 Chips tiled on 1/2 disk sensor
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Disk Parametric Study

» Parametric study of momentum and
 Impact parameter resolution as a function
of disk spatial resolution

» Based on this there is no way to specify pixel

size in disks

» Different if barrel hit is missed or degraded
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Cabling and Interconnect Y

(

Power delivery design
— Serial power / DC-DC conversion / Capacitive switching
— Controls
— Regulation locations, number of cables to outside
— Division of modules?
Cable routing. Along beam pipe or along support cylinder
Optical or electrical interconnect
— power required, location
Sensor/cable interface design.
Lorentz forces.

Pulsed power R&D —This an important aspect of any ILC —based
electronics system and needs to be studied.



Data Load - 8D -
Rolling
bits/hit 30 Shutter
0.001 sec/train
layer Hits/crossing hits/train hits/sec bits/sec ladders bits/sec/Ladder
1 2000 5.64E+06 5.64E+09 1.69E+11 12 1.41E+10
2 1200 3.38E+06 3.38E+09 1.02E+11 12 8.46E+09
3 800 2.26E+06 2.26E+09 6.77E+10 18 3.76E+09
4 500 1.41E+06 1.41E+09 4.23E+10 24 1.76E+09
5 500 1.41E+06 1.41E+09 4.23E+10 30 1.41E+09
Rolling Shutter 1.41E+07 1.41E+10 4.23E+11 96
Between Trains 7.09E+07 2.13E+09
bits/sec/Ladder
2.E+10
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Optical or Electrical?

Optical interconnect generally
favored for long lengths, high bit
rate.

Bit rates for the most aggressive
scenarios (>10 Gb/sec/ladder)
are probably only practical
optically

Difference is not hugh, power is
~5-15 mW/connection x 96
ladders ~ 0.5-1.5W.
Significant but sustainable

Fig. 5.
showing
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Simulation Y

(

What is needed to understand pattern recognition performance?

— Overall tracking in 3D over full angular range

— Ability to change geometries and sensor characteristics

— Ability to add beam background

— Use Nick Sinev’s package for charge deposition where important
What is needed to understand physics performance?

Are the standard benchmarks what we want? Would like a mode or
modes that allows us to:

— Cleanly study capabilities
— Emphasize forward tracking (SiD strength)

— Incrementally build understanding —adding more complex studies
as appropriate

— Interact efficiently with benchmarking studies groups

A In e*e—bb, cc, while not on the compulsory list, is an appealing
reaction to start with.



Vertex Simulation Goals - 5D -

Understand effects of forward pixel size
Understand effects of material associated with barrel services

Understand the requirements for time resolution as a function of barrel
layer

Understand the effects of inclined tracks in the forward direction
Begin to study the effects of various technological options

Understand the physics capabilities of the detector.
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Conclusions (but not the end) - 5D

N

« Maintain coherence between developing the concept design and R&D efforts
— Develop physics simulation with pattern recognition
« Initial aim would be for internal studies
« Use it to motivate decisions

« Depends on full simulation package with beam backgrounds, pattern
recognition, and charge deposition

— Increase participation in tracking/vertex meetings
— Integrate R&D groups in simulation and system design
— Find groups to study

 |Interconnection

« Power engineering (serial, DC/DC, pulsed)

« | suggest a 1-2 day vertex design and simulation workshop at a future SiD
meeting.



Summary of Fermilab IR
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Activities

VIP1/VIP2a

- 3 tiers

Completing testing of VIP three tier

3D ILC chip from MIT-LL ;L 2 T I
— Received in Dec Jo e T acpe [y

* poor yield, processing isues CLERET m 2 T ¥ et
— Opverall design looks good (used -;——'---' = | = ﬁE -

Inj
¥ address rekenout || M m e mm e e e -

in INFN CMOS MAPS SDRO chip)

Details in R. Yarema Ringberg talk: = -=mm=ms

http://indico.mppmu.mpg.de/indico/getFile.py/access?contribld=12&amp;sessionld=6&amp;res
Id=0&amp;materialld=slides&amp;confld=184

Test MIT-LL sensors thinned to 50 microns using 3M thinning
process and laser annealed.

Test oxide-bonded (Ziptronix DBI) BTeV chips and MIT-LL sensors
thinned to 50 microns after bonding.

Submit VIP-2a to upcoming MIT-LL 3D run
Modify VIP chip to two tiers in 0.13 micron Chartered process

— Fermilab will sponsor a Chartered/Tezzaron two tier 3D
multiproject run in ~December

Continue laser annealing and thinning development work

The Chartered/Tezzaron path, which uses exclusively commercial
vendors and a high volume CMOS fab seems most promising to us
at the moment.




3D Vertex Sensor Concept : @ =

l _ Through silicon via
! ROIC
L A N r‘|"_ e N
T o / detector
20.00 T Oxide bond , g g

Al Iij_ad

50.00

-

5=
’

Si I ‘
\

Si02 Top wafer

Super Contact” a

?
I
I
I

Sy -
SRy SNy ETEE AT e
Si02  Bottom wafer rayes | BAum 8i02

Si

Tezzaron/
Chartered 0.13
micron process

2nd wafer

Ziptronix DBI process




