Vertex Detector

- SiD Vertex Concept
 - High magnetic field allows for small inner radius for the inner layer
 - Barrel and disk system
 - Provides good forward tracking
 - Always at least one barrel hit/track
 - Unique to SiD
 - Integrated mechanical design with tracker
- But we don't
 - Understand optimization of the disks
 - Have functional pattern recognition or physics simulation
 - Understand power and interconnection issues
- We do want to preserve technology options for the sensors, which limits detail in a final design

Si D

Vertex Subsystem

Coverage of some areas is spotty because

- Sensor R&D groups tend to focus on detector technology rather than the detector concept
- Tools are not available
- Manpower is not available
- Funding is not available

• SiD •

VTX Groups

- SLAC
- FNAL
- UK (Bristol, Oxford, RAL)
- MPI
- Prague
- Oregon
- Add or direct effort into more experiment-specific or generic (nonsexy) problems
- While keeping the R&D work active and well-supported

Vertex System Design Issues

- Mechanical Design
 - Series of meetings had been running organized by Bill and Joel.
 - Barrel geometry is specified
 - Disk design is still at an early stage
 - Mass constraints
 - Power constraints
 - Conceptual design for CF support cylinder
 - Hope to build a prototype at FNAL
 - Many mechanical issues depend on sensor technology, electronics design these have to wait.
- There is a solid base overall mechanical design which can accommodate various sensor and readout options.
- Joel will discuss this in more detail

Summary of Hardware Efforts

- Sensor R&D
 - UK LCFI
 - CPCCD, ISIS CCD
 - FNAL
 - 3D Electronics, SOI
 - MPI, Prague
 - DEPFET detectors
 - Oregon
 - CMOS MAPS

- Other R&D
 - UK
 - Support structures
 - Mechanical
 - FNAL
 - Mechanical Design
 - Serial Power
 - Thinning
 - MPI
 - Thinning and support
 - SLAC
 - Electronic system integration

Not covered - other powering schemes, pulsed power studies, interconnections Understanding of power => understanding of mass distribution

Basic Parameters

- IP resolution will be determined by mass, inner radius, and pixel size. More complex questions include:
 - How resolution is degraded with angle in the forward direction
 - What are the pattern recognition constraints?
- Optimizations
 - Mix in decreased time resolution technologies in outer layers

Parametric simulation assuming:

- 0.1% RL per layer
- 5 micron resoluton
- 1.4 cm inner radius
 Varying each parameter
- Vertex pixel size optimization (power/pixel size tradeoffs)

Disks

- Assuming pixels for the forward region
 - What are we asking of the forward disks
 - IP resolution dominated by barrels
 - Pattern recognition
 - Integration with forward silicon design
 - Determines momentum res., angle measurement
 - Pixel size
 - Maximum size -> minimum power
 - Support and geometry

3D DBI-based concept Chips tiled on 1/2 disk sensor

Vertex barrel ~ 150,000 mm² Vertex Disks ~ 120,000 mm²

Disk Parametric Study

- Parametric study of momentum and
- Impact parameter resolution as a function of disk spatial resolution
- Based on this there is no way to specify pixel size in disks
- Different if barrel hit is missed or degraded

Cabling and Interconnect

- Power delivery design
 - Serial power / DC-DC conversion / Capacitive switching
 - Controls
 - Regulation locations, number of cables to outside
 - Division of modules?
- Cable routing. Along beam pipe or along support cylinder
- Optical or electrical interconnect
 - power required, location
- Sensor/cable interface design.
- Lorentz forces.
- Pulsed power R&D This an important aspect of any ILC –based electronics system and needs to be studied.

Data Load

				Rolling				
bits/hit		30		Shutter				
				0.001	sec/train			
layer	Hits/crossing hits/train			hits/sec	bits/sec	ladders	bits/sec/Ladder	
	1	2000	5.64E+06	5.64E+09	1.69E+11	12	1.41E+10	
	2	1200	3.38E+06	3.38E+09	1.02E+11	12	8.46E+09	
	3	800	2.26E+06	2.26E+09	6.77E+10	18	3.76E+09	
	4	500	1.41E+06	1.41E+09	4.23E+10	24	1.76E+09	
	5	500	1.41E+06	1.41E+09	4.23E+10	30	1.41E+09	
Rolling Shutter 1.41E+07			1.41E+10	4.23E+11	96			
Between Trains			7.09E+07	2.13E+09				

Optical or Electrical?

- Optical interconnect generally favored for long lengths, high bit rate.
- Bit rates for the most aggressive scenarios (>10 Gb/sec/ladder) are probably only practical optically
- Difference is not hugh, power is ~5-15 mW/connection x 96 ladders ~ 0.5 - 1.5 W. Significant but sustainable

Fig. 5. Power comparison between the electrical and the optical interconnect showing the critical lengths at a detector capacitance of 25 fF.

Fig. 6. Critical length in terms of system bit rate for the QWM and the VCSEL transmitter technologies.

Simulation

- What is needed to understand pattern recognition performance?
 - Overall tracking in 3D over full angular range
 - Ability to change geometries and sensor characteristics
 - Ability to add beam background
 - Use Nick Sinev's package for charge deposition where important
- What is needed to understand physics performance?
- Are the standard benchmarks what we want? Would like a mode or modes that allows us to:
 - Cleanly study capabilities
 - Emphasize forward tracking (SiD strength)
 - Incrementally build understanding –adding more complex studies as appropriate
 - Interact efficiently with benchmarking studies groups
- A_{FB} in e⁺e⁻→bb, cc, while not on the compulsory list, is an appealing reaction to start with.

Vertex Simulation Goals

- Understand effects of forward pixel size
- Understand effects of material associated with barrel services
- Understand the requirements for time resolution as a function of barrel layer
- Understand the effects of inclined tracks in the forward direction
- Begin to study the effects of various technological options
- Understand the physics capabilities of the detector.

Conclusions (but not the end)

- Maintain coherence between developing the concept design and R&D efforts
 - Develop physics simulation with pattern recognition
 - Initial aim would be for internal studies
 - Use it to motivate decisions
 - Depends on full simulation package with beam backgrounds, pattern recognition, and charge deposition
 - Increase participation in tracking/vertex meetings
 - Integrate R&D groups in simulation and system design
 - Find groups to study
 - Interconnection
 - Power engineering (serial, DC/DC, pulsed)
- I suggest a 1-2 day vertex design and simulation workshop at a future SiD meeting.

Summary of Fermilab Activities

- Completing testing of VIP three tier 3D ILC chip from MIT-LL
 - Received in Dec
 - poor yield, processing isues
 - Overall design looks good (used in INFN CMOS MAPS SDR0 chip)

Details in R. Yarema Ringberg talk:

http://indico.mppmu.mpg.de/indico/getFile.py/access?contribId=12&sessionId=6&res Id=0&materiaIId=slides&confId=184

- Test MIT-LL sensors thinned to 50 microns using 3M thinning process and laser annealed.
- Test oxide-bonded (Ziptronix DBI) BTeV chips and MIT-LL sensors thinned to 50 microns after bonding.
- Submit VIP-2a to upcoming MIT-LL 3D run
- Modify VIP chip to two tiers in 0.13 micron Chartered process
 - Fermilab will sponsor a Chartered/Tezzaron two tier 3D multiproject run in ~December
- Continue laser annealing and thinning development work The Chartered/Tezzaron path, which uses exclusively commercial vendors and a high volume CMOS fab seems most promising to us at the moment.

