

The problem of power distribution (PPD)for tracking detectors. A SLHC R&D snapshotMarc Weber (RAL)

ILC and LHC/Super-LHC trackers share two major challenges

(albeit at different scale):

How to limit

Power consumption and **detector mass** ?

Power distribution, the topic of this talk relates to both of these

Challenges for SLHC trackers

Powering at LHC proved tough and led to an undesired performance penalty, in particular for forward tracking

	ATLAS pixels	CMS pixels	ATLAS strips	CMS strips
Number of modules	1744	1440	4088	15148
Total number of channels	80 M	66 M	6.2 M	10 M
Total rack power incl. optical links and cable losses	30 kW	7 kW	45 kW	67 kW
ROIC name and technology	FE-I3	PSI46	ABCD	APV25
	0.25 μm CMOS	0.25 μm CMOS	0.8 μm bi-CMOS	0.25 μm CMOS
ROIC analog (digital) voltage	1.6 V (2.0 V)	1.5 V (2.5 V)	3.5 V (4 V)	1.25/2.5 V (2.5 V)
ROIC power consumption/channel	84 μW	40 μW	3.6 mW	2.9 mW
Total ROIC current	3.8 kA	1.5 kA	6 kA	15 kA
Cable length (one way)/resistance (round trip)	~110 m	~50 m	~110 m/4.5 Ω	34-62 m
Power efficiency	~20%	~42%	~50%	52%
Power distribution schemes	IP4	PP ⁵	IP	PP
Local regulators (near/on-detector)	Yes	Yes	No	Yes

Power distribution at LHC

Depending on experiment (ATLAS and CMS) and detector type (pixels or strips):

- 6 80 M channels
- 4 15K detector modules
- 7-70 kW of rack power for readout electronics (*due to radiation*)
- 50 m to 110 m long power cables (one way) (due to detector size/energy)
- 20-50% power efficiency

Constraints: limited space to feed through cables; requirement of minimum mass; need to minimize thermal losses in cables; packaging constraints on detector

SLHC trackers will have 5 to 10 times more channels than LHC ⇔ **Power distribution concept must change radically**

Why independent powering fails at SLHC ?

Current per electronic channel ~ constant, but many more channels

- 1. Don't get 5 or 10 times more cables in
- 2. Power efficiency is too low (50% ATLAS SCT $\Leftrightarrow \sim 15\%$ SLHC)
- 3. Cable material budget: 0.2% of R.L. per layer (barrel normal incidence) ⇔ 1% or 2% SLHC
- 4. Packaging constraints

Each reason by itself is probably sufficient for a No-No

Why powering R&D ?

Front view on ATLAS tracker barrel

Cannot afford cable pollution anymore and don't need to. New systems will be much better

(cable number, material performance; packaging; power efficiency)

How we will fix the cable pollution?

Minimize module power consumption in the first place.

Minimize the current through cables. There are only two ways:

a) recycling current (Serial Powering) or
b) "high-voltage" power lines plus DC-DC conversion

Both require local "power supplies" (regulators or converters) on the detector module <> PS design challenge + system challenge

How we will fix the cable pollution?

Serial powering

DC-DC buck converter

DC-DC charge pump

Piezoelectric transformer

Serial powering

Send constant current from module to module; local shunt regulators to define module voltage.

Different modules sit at different potential \Leftrightarrow need AC-coupling of signals (was a bit of a nuisance but not an issue)

```
Unorthodox, "crazy", but elegant. Also used for LHC magnets...
```

New approaches offer remarkable benefits: reduction of cable volume by factor 10-20; increase of power efficiency by factor 2-5...

A few comments

Serial powering is an old idea. First implemented for ATLAS pixels by Bonn University. Picked up ~2 years ago by RAL for strips

Initially we were mostly worried about noise/electrical performance of these multi-module systems (apart from failure and loss of many modules)

Wrongly! SP systems tend to be quiet:

a) local regulator on module helpsb) Current in the chain is constant <> no IR drops

Rutherford Appleton Laboratory Particle Physics Department

Serial powering circuitry evolution

G. Villani

SP HV results

Tests with ATLAS SCT modules or hybrids

SCT module test set-up

ENC with injection of external voltage pulse into power line (1V pp through 15 pF)

Independent powering - - - Serial Powering 1600 1550 1500 <ENC> 1450 1400 ENC of IP vs. SP 1350 755 662 663 159 628 006 Module #

Noise vs injected noise frequency

ENC with current modulation of 20 mA

12

Many results, noise looking good. So far only commercial electronics

Objects we built and tested so far

ATLAS SCT module tests

Six ABCD hybrid with SP for 30 module stave

6-module serial powering stave

Next step are design of custom electronics

Main difficulties: high current requirement and limited HEP IC design experience in this area. Benefits: much reduced output impedance; much reduced real-estate; radiation-hardness

	Required range	Desirable range		
Output voltage	1.2 V – 1.8 V	1.2 – 2.8 V		
Output current	> 2 A	> 4 A		
Dynamic output impedance	$10~\Omega$ at $< 10~MHz$	0.1 Ω at $<$ 100 kHz		
		$0.5 \ \Omega$ at $< 10 \ MHz$		
Magnetic field operation	> 4 T	>4 T		
Radiation-tolerance	10 ¹⁵ n/cm ²	10 ¹⁶ n/cm ²		
	100 MRad	500 MRad		
Size		100-250 mm ²		
Inefficiency	<20%	~5%		
	EMI susceptibility is detector specific. Limits for radiative EMI (e.g. from			
Minimum EMI	inductor coils) are not yet understood. For conducted EMI, 40 dbµA of common-			
	mode should not be exceeded in the frequency range of 100 kHz to 30 MHz.			
High reliability	System dependent. Targeted module power failure rate: $<1\%$ per module over 5			
	years of operation			

Table 2: Specification for SLHC power regulators, converters or transformers. See the text for

explanations.

Serial Powering Schemes - Motivation

1) External shunt regulator + transistor

Good approach, but implies a high current shunt

-> limited experience in HEP-IC community

SP device enables to operate non SP-ROIC in SP mode

feedback however more challenging and depends on implementation

2) Internal shunt regulator + transistor in each ROIC

Disadvantage: many power supplies in parallel Matching issue can cause hot spots and potentially kill chips

- choice of architecture not obvious, detailed studies anticipated by RAL/LBNL (M.Weber, C.Haber)
- SPI chip should cover scheme (1) and (3)
- scheme (2) can be realized by any ROIC standalone

LHC Power Workshop, CERN, 07.04.2008

- 2 -

Interlude: SPi chip

General purpose SP interface

Overall layout and design: Marcel Trimpl, FNAL LVDS part and stand-alone SR: Mitch Newcomer and Nandor Dressnandt, Penn Specification and KE: Giulio Villani, RAL

Main blocks and features:

Shunt regulator(s) and shunt transistors; LVDS buffers; over current protection; Shunt current sensing ADC; TSMC 0.25µm CMOS with rad-hard layout; Max. shunt current: 1 A design, "expected" 2.5 A; Size: ~ 14 mm²; bumping

Principle of OverPower Protection

Procedure:

- 1. ADC reports current alarm or power down command
- 2. Amplifier decoupled, Vshunt connected to Vbuffer (2.5V)
 - -> forces shunt-mos in lin.region & reduces Vchip (Ron*I)
 - -> whole chip collapses, only shunt maintains operatio
- 3. let's see how far (long) we can go using a simple buffer cap
 - very attractive for pulsed powered schemes
 - for permanent power down basically leakage effects need to be compensated (short ramp up to recharge)

- 1. OverPower is **NOT** OverCurrent
 - -> current should stay the same in SP scheme!
- 2. Power reduction by

collapsing the chip voltage

- 3. Goal: reduce Vchip to minimum
 - e.g. 50mV and 4A -> P ~ 200mW
 - in the order of nominal operation
 - comparable to ROIC on module

-> no hot spot!

Sounds crazy, but serial powering is already!

SP architecture choices

b) Shunt regulator + transistor in each ROIC

Integrated (custom) SR and transistor designed by Bonn worked well for pixels.

Many power supplies in parallel; Addresses high-current limitation and provides protection. Difficulty is matching and switch-on behaviour of shunt transistors. Must avoid hot spots that kill one shunt transistor after the other.

Specific implementation in ATLAS ABC-Next

Prototype chip for Si strip readout in Upgrade Inner Tracker

Compatible with serial powering scheme

19

Full shunt regulator on chip - design concept

Need democratic distribution of shunt current, not winner takes it all.

20

Conclusions

Solving PPD for SLHC trackers is crucial, extremely challenging and urgent.

It is unusual to gain such significant factors in a technology as mature as silicon detectors.

Power distribution R&D is a new and exciting field. International collaboration is growing. <u>http://indico.cern.ch/conferenceDisplay.py?confld=31377</u>

I expect significant spin-offs outside of PP, e.g. space and synchrotron detectors. Benefits not limited to tracking.

Appendix

Rutherford Appleton Laboratory Particle Physics Department

Expected performance benefit of custom SP circuitry

Distributed Slave Module Output Impedance

Measurement (RAL): Prototype with commercial components

Simulation (Mitch Newcomer): External Shunt Regulator and Integrated Shunt Transistors

Dynamic impedance: reduced by one or two orders of magnitude!

Power efficiency for SP at LHC and SLHC

Illustration of various cases:

SCT \Leftrightarrow 4V, 1.5 A, R= 4.5 Ω \Leftrightarrow x=1.14; IP SLHC \Leftrightarrow 2.5V, 2.4 A, R= 4.5 Ω \Leftrightarrow x=4.3; SP (only cable losses) SLHC \Leftrightarrow 1.5V, 4 A, R= 4.5 Ω \Leftrightarrow x=12; SP (only cable losses) same but including SR power and LR power (extrapolated from ATLAS SCT measurements)

Let's work out a powering example

here $V_{ROIC} = 2.5 \text{ V}$; $I_H = 2.4 \text{ A}$; 20 hybrids; DC-DC gain = 20

SP: n=20; $I_{H} = I_{PS} = 2.4 \text{ A}$; $V_{PS} = nV_{ROIC} = 50 \text{ V}$ Features: saves factor ~8 in power cables/length over ATLAS SCT

DC-DC PP: n=20; g = 20; $I_{PS} = n/g I_H = 2.4 A$; $V_{PS} = gV_{ROIC} = 50 V$ Features: saves factor ~8 in power cables as SP, watch IR drops $\Leftrightarrow R_{cable} \sim 0.1-1 \Omega$ **DC-DC IP:** n=1; g = 20; $I_{PS} = I_H/g = 0.12 A$; $V_{PS} = gV_{ROIC} = 50 V$ Features: 2x more cables than SCT \Leftrightarrow problematic for strips

Features of IP and alternative schemes

	IP	SP	DC-DC	Comment
Power efficiency	10-20%	60-80%	60-80%	Varies with I, n (SP); gain (DC-DC)
Local regulator inefficiency	0%	~10%	<20%	This is without linear regulator for analog
number of power cables	4 per hybrid	Reduction by factor 2n	Reduction by factor 2n	n = number of hybrids
Voltage control over ind. hybrids	Yes On/Off; fine- adjustment	Stand-by mode: 2.5V/1.5V -> 0.7 V; Limited fine-adjustment	Yes On/Off; limited fine- adjustment	New schemes have regulators; no fine adjustment needed
Hybrid current info	Yes	Yes (sensing current through power device)	Yes	Some power penalty for DC-DC
Hybrid voltage info	Yes (need sense wires)	Yes	Yes	Not strictly needed, since regulators
Floating hybrid power supplies	Yes	No, voltage chain	No	
Protection features	Separate set of cables for each hybrid	Local over-current protection; redundant regulators	Don't know yet	Protect against open (SP) and short (DC- DC)

Let's preserve the good features of IP \Leftrightarrow have voltage control, current monitoring, and protection features

Overview of activities in a nut shell

DC-DC buck converters and charge-pumps On-(read-out) chip and dedicated stand-alone converters

Serial powering regulators implemented in (read-out) chip and dedicated stand-alone generic chip

Studies so far were largely limited to bulky commercial devices

Program requires development of these devices for one:-good electrical performance-high current capability-radiation hardness-magnetic field tolerance-low mass/ small size-low EMI

-high reliability

Development of these devices also requires their validation with detector modules or chains of detector modules