CLIC Detector R&D @ CERN Status + plans

- 2004 CLIC Study group report: "Physics at the CLIC Multi-TeV Linear Collider"
- 2006-2009 EUDET R&D
- Oct 2007, CLIC07@CERN, first Workshop on CLIC accelerator and physics aspects → goal: feasibility prove by mid 2010 (CDR)
- Feb 2008 CLIC/ILC Collaboration meeting

Prospects for Scientific Activities over the Period 2012 - 2016

To be decided in 2010-2011 in light of first physics results from LHC, and designed and R&D results from the previous years. This programme could most probably comprise:

An LHC luminosity increase requiring a new injector (SPL and PS).

The total cost of the investment over 6 years (2011-2016: 1000-1200 MCHF + a staff of 200-300 per year. Total budget: ~200-250 MCHF per year.

- Preparation of a Technical Design for the CLIC programme, for a possible construction decision in 2016 after the LHC upgrade (depending on the ILC future). Total CERN M + P contribution + ~250 MCHF + 1000-1200 FTE over 6 years.
- Enhanced infrastructure consolidation: 30 MCHF + 40 FTEs from 2011.

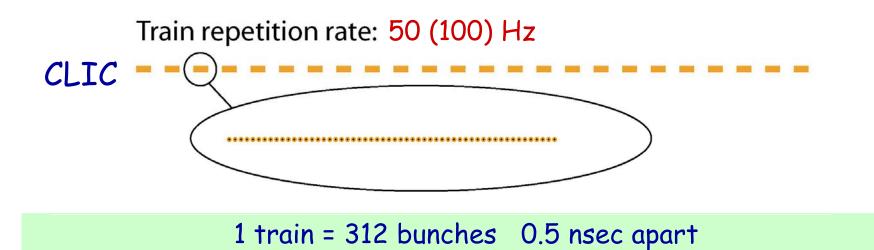
NB: Over the period 2012-2016. Effective participation of CERN in another large programme (ILC or a neutrino factory) will not be possible within the expected resources if positive decisions taken on LHC upgrade and CLIC Technical Design. This situation could totally change *if none of the above programmes is approved* or if a new, more ambitious level of activities and support is envisaged in the European framework.

Basic Parameters

 CLIC aims to achieve a luminosity similar to the ILC level at much higher energy

		CLIC	ILC	NLC
E_{cms}	[TeV]	3.0	0.5	0.5
f_{rep}	[Hz]	50	5	120
N	$[10^9]$	3.7	20	7.5
ϵ_y	[nm]	20	40	40
L_{total}	$10^{34} cm^{-2} s^{-1}$	5.9	2.0	2.0
$L_{0.01}$	$10^{34} cm^{-2} s^{-1}$	2.0	1.45	1.28
n_{γ}		2.2	1.30	1.26
$\Delta E/E$		0.29	0.024	0.046

- Luminosity is delivered in 50 pulses per second
- Each pulse lasts about $150 \, \mathrm{ns}$, contains 312 bunches spaced by $0.5 \, \mathrm{ns}$
- \bullet In ILC luminosity is delivery by pulses with $5\,\mathrm{Hz}$
- Each pulse is about 1 ms long 2800 bunches spaced by 350 ns
- $\Rightarrow \text{Very different regime}$
 - event reconstruction
 - background conditions
 - High energy also affect background level

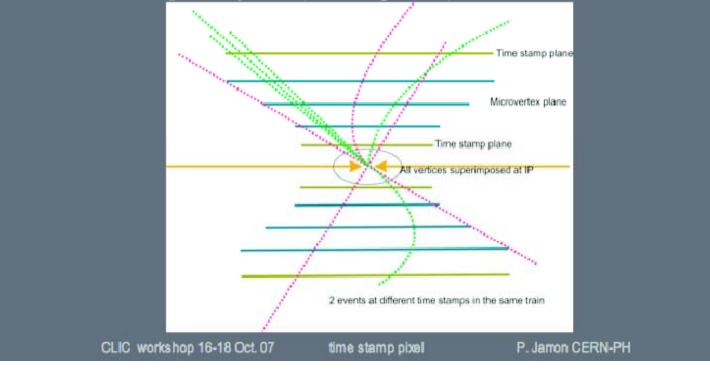

Daniel Schulte CLIC07

Luminosity and Background Values

		CLIC	CLIC	CLIC	ILC	NLC
E_{cms}	[TeV]	0.5	1.0	3.0	0.5	0.5
f_{rep}	[Hz]	100	50	50	5	120
N	$[10^9]$	3.7	3.7	3.7	20	7.5
ϵ_y	[nm]	20	20	20	40	40
L_{total}	$10^{34} cm^{-2} s^{-1}$	2.2	2.2	5.9	2.0	2.0
$L_{0.01}$	$10^{34} cm^{-2} s^{-1}$	1.4	1.1	2.0	1.45	1.28
n_γ		1.2	1.5	2.2	1.30	1.26
$\Delta E/E$		0.08	0.15	0.29	0.024	0.046
N_{coh}	10^{5}	0.03	37.0	3.8×10^3	—	
E_{coh}	$10^3 TeV$	0.5	1080	$2.6 imes 10^5$	—	
n_{incoh}	10^{6}	0.05	0.12	0.3	0.1	n.a.
E_{incoh}	$[10^6 GeV]$	0.28	2.0	22.4	0.2	n.a.
n_{\perp}		12.5	17.1	45	28	12
n_{had}		0.14	0.56	2.7	0.12	0.1

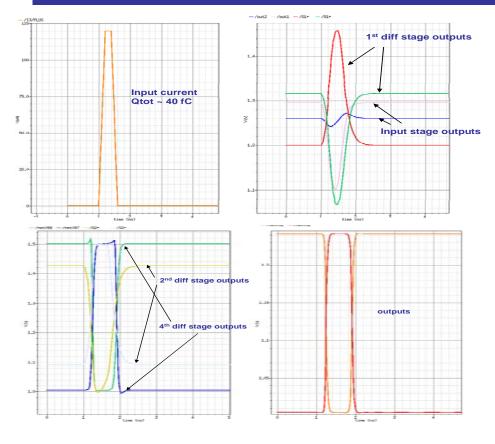
- Target is to have about one beamstrahlung photon per beam particle
 - similar effect to initial state radiation
 - \Rightarrow average energy loss is larger in CLIC than ILC
- Note: shorter bunches increase the photon energy but not the number

Time Structure of the Beams



Timing Issue at CLIC

- Time tagging of vertices
 - 331 BX's piled up in detector/electronics
- Issue of track reconstruction ambiguities
 - No longitudinal spread of BX interactions
 - Bunch identification by time stamp
 - Ideal time stamp precision 1/6 of bunch separation, 100 ps rms
 - Interaction point very stable (10 μm longitudinal)


Pierre Jarron CLIC07

Electronics, NA62 Gigatracker or even faster

NA62@SPS: rare decay $K^{\pm} \rightarrow \pi^{\pm} \nu \overline{\nu}$

Ultra fast amplifier NINO

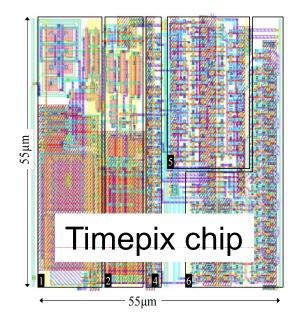
 Done in 250 nm preliminary simulation in 130 nm

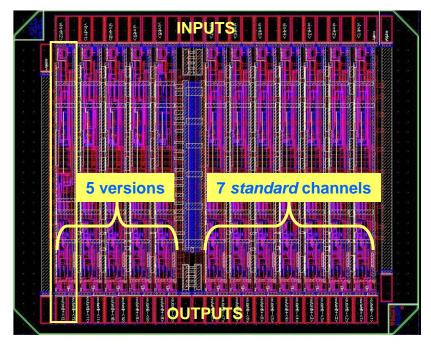
• NINO 130

- Rise time amplifier 150 ps
- Time stamping better than 20 ps
- NA62 electronics
 - Time stamping 250 ps

Pierre Jarron

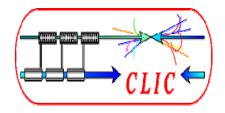
Detector Specifications


Detector	CLIC	CLIC Report 2004:			
Vertexing	$15 \mu m \oplus rac{35 \mu m GeV/c}{p \sin^{3/2} heta}$	Starting point: the TESLA			
	$15 \mu m \oplus rac{35 \mu m GeV/c}{p \sin^{5/2} \theta}$	TDR detector adapted to CLIC environment			
Solenoidal Field	B = 4 T				
Tracking	$rac{\delta p_t}{p_t^2}=5. imes 10^{-5}$	- Detailed studies performed for			
E.m. Calorimeter	$rac{\delta E}{E(GeV)}=0.10rac{1}{\sqrt{E}}\oplus 0.01$	previous CLIC parameters - Update with new CLIC parameters is underway			
Had. Calorimeter	$rac{\delta E}{E~(GeV)}=0.40rac{1}{\sqrt{E}}\oplus 0.04$				
μ Detector	Instrumented Fe yoke	- Greater need for time-stamping			
	$rac{\delta p}{p}\simeq 30\%$ at $100~GeV/c$	of events			
Energy Flow	$rac{\delta E}{E~(GeV)}\simeq 0.3rac{1}{\sqrt{E}}$	- No significant physics difference			
Acceptance	$ \cos heta < 0.98$	found previously between NLC and TESLA at sub-TeV energies - None expected between old and new multi-TeV parameters			
mask	120 mrad				
beampipe	3 cm				
small angle tagger	$ heta_{min}=40{\sf mrad}$				


CERN participation in EUDET 2006-2009

- MICELEC: microelectronics user support
- VALSIM: optimisation of hadronization process in GEANT4
- Magnet: magnetic field map of PCMAG magnet at DESY test beam
- Timepix: development of pixel chip for TPC pixelised readout
- TPC electronics: development of TPC pad readout (aiming for combined analog/digital readout fitting behind 1×4 mm² pads)

PCMAG field map campaign at DESY 2007

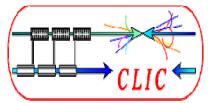

TPC pad readout, programmable amplifier 130 nm technology

Lucie Linssen

<u>CERN contribution to LC tasks in</u> recent FP7 proposal

http://project-fp7-detectors.web.cern.ch/project-FP7-detectors/Default.htm

- Test beam for combined linear collider slice tests (providing beam, large magnet, general infrastructures etc.)
- Continued support for TPC electronics
- Participation in Project office for linear collider detectors (engineering tools for project office; design support for test beam set-up)
- Test-case of LC project tools on CLIC forward region example (together with DESY and ILC forward study teams)
- Software tools (geometry and reconstruction tools)
- Microelectronics user support



 Following visit of Barry @ CERN (Nov 07) http://www.linearcollider.org/newsline/archive/2007/20071213.html

> **Independently of US/UK financial crisis,** but even more desirable now

- CLIC-ILC Collaboration meeting (Feb 08) http://indico.cern.ch/conferenceDisplay.py?confId=27435
- **GDE/ACFA** Meeting at Sendai/Japan (March 08) http://www.awa.tohoku.ac.jp/TILC08/

- 1. Civil Engineering and Conventional Facilities
- 2. Beam Delivery Systems & Machine Detectors Interface
- **3. Detectors**
- 4. Cost and Schedule
- 5. Beam Dynamics & Beam Simulations including Low Emittance Transport

Topics for CLIC-ILC Detector R&D

(summary: Detectors from meeting 8 Feb 08)

1) Define a CLIC detector concept at 3 TeV. (update of 2004 CLIC Study) based on ILC detector concepts.

2) Detector simulations

- Simulation tools to be used by ILC and CLIC (WWS software panel)
- Validation ILC detector options for CLIC at high energy, different time structure and different backgrounds
- 1 TeV benchmark studies to provide overlap
- compare performance using defined benchmark processes
- (e.g. WW/ZZ separation)

Continue Summary...

3) EUDET /DEVDET (infrastructure for LC detector R&D, with associated non-EU groups)

- microelectronic tools
- 3D interconnect technologies (for integrated solid state detectors)
- simulation and reconstruction tools
- combined test with magnet and LC sub-detectors

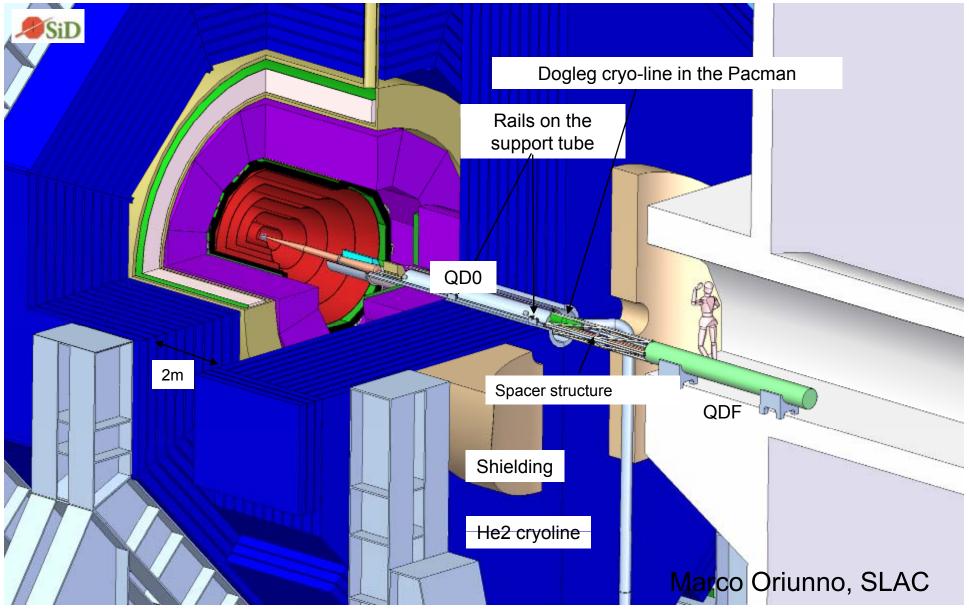
4) TPC

- TPC performance at high energies (>500 GeV).
- TPC read out electronics

5) Calorimetry

- Dual Readout Calorimetry (feasible at LC?)

6) General


- increased CLIC participation in future ECFA workshops (2008 Warsaw) on LC detectors

Lucie Linssen 08/02/08

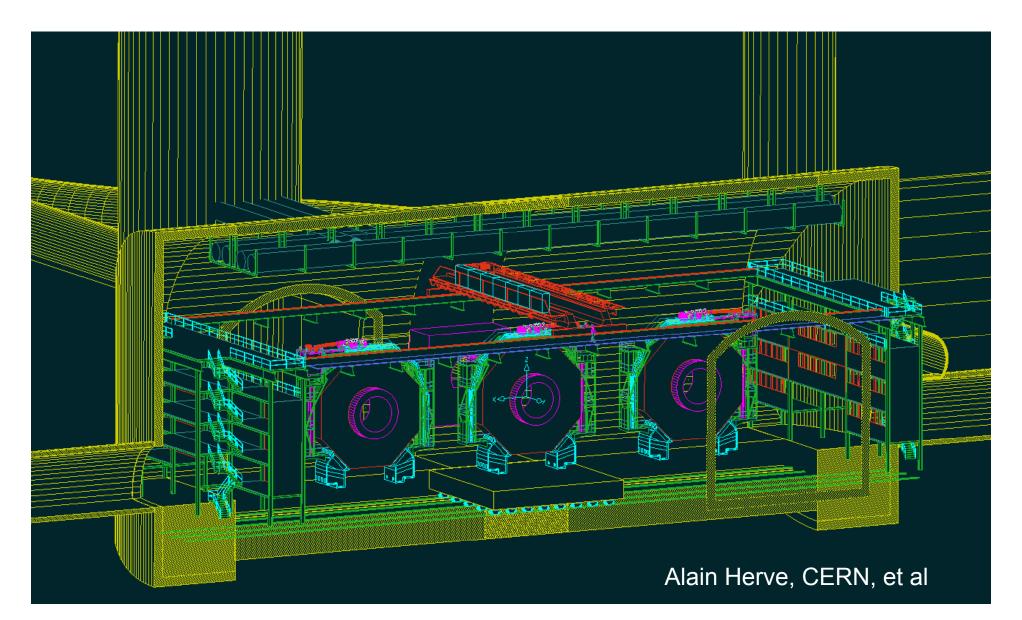
Machine Detector Interface

- General layout and integration
 - Common meeting/review required
 - Common engineering tools for detector design in preparation (DESY, CERN, IN2P3, FP7)
- Background and luminosity studies
 - Strengthen support
- Masking system
 - Constraints on vertex detector
- Detector field
 - Need a field for CLIC
- Magnet design
- Common simulation tools for detector studies
 - Need to review what is available
- Low angle calorimeters
- Beam pipe design (LHC)
- Vacuum etc. (LHC)

IR integration, SiD example

Background and Luminosity Studies

- Common simulation tools
 - BDSIM ()
 - Integration into GEANT?
 - FLUKA (CERN)
 - Halo and tail generation (CERN)
 - Common formats etc
- Study of machine induced background
 - In particular, neutrons, muons and synchrotron radiation
 - Mitigation strategies
 - e.g. tunnel fillers against muons
- Study of beam-beam background and luminosity spectrum


Support, Stabilization and Alignment

- LAPP, Oxford, CERN, FP7, BNL, SLAC, ...
 - Other please join
- Low-noise design
 - Noise level measurements (DESY, CERN)
 - Among others, measurements at LHC
 - Component design
- Mechanical design of quadrupole support
- Final quadrupole design
- Stabilization feedback design
 - Sensors
 - Actuators
 - Interferometers

Experimental Area Integration

- Common definitions
- Infra-structure
 - Work is quite generic
 - No large differences expected for CLIC detector to some ILC detector
 - Collaboration has started
 - LHC expertise
- Push-pull
 - Is an option for both projects
 - A collaboration has started
 - Brings ILC/CLIC/LHC expertise
- Crossing angle
 - Investigate requirements
 - Then study benefits to find a common crossing angle

Push-Pull studies for two detectors

Conclusion (from CLIC07)

- Good exchange with ILC experts, possible basis for future collaborations?
 - There are certainly communalities with the ILC detectors
 - ILC detector studies: R&D and discussions/optimization still ongoing
- Work is needed for CLIC on detector studies
 - Some benchmark channels started (taking SiD)
 - Need to discuss MDI with machine group (e.g.Mask upgrade/forward region instrumentation)
 - How well does particle flow (Energy flow) work at CLIC?
- R&D detector proposals being prepared
 - Good prospects for adequate time stamping at CLIC
 - Novel calorimeter concepts
- Specific detector R&D in FP7 (DevDet)?