PandoraPFA

This Talk:

- PFA Goals revisited
- 2 Algorithm Overview
- **B** Status at LCWS07
- From LCWS to now
- **On-going work**
- **O** Detector studies
- Some Comments
- 8 Conclusions

PFA Goals : revision

★ Typical di-jet energies at ILC (100-300 GeV) suggests jet energy resolution goal of $\sigma_E/E < 0.30/\sqrt{E_{jj}(\text{GeV})}$

But Not The End

★Push as hard as possible for best jet energy resolution★Ultimate criterion – "physics performance"...

The PandoraPFA Algorithm

- ★ ECAL/HCAL reconstruction and PFA performed in a single algorithm
- **★** Keep things fairly generic algorithm
 - applicable to multiple detector concepts
- **★** Use tracking information to help ECAL/HCAL clustering
- ★ Fairly "sophisticated" algorithm : 10⁴ lines of code
 - of order 4 orders of magnitude less lines of documentation

Eight Main Stages:

- i. Preparation
- ii. Loose clustering in ECAL and HCAL
- iii. Topological linking of clearly associated clusters
- iv. Courser grouping of clusters
- v. Iterative reclustering
- vi. Photon Identification/Recovery
- vii. Fragment removal

viii. Formation of final Particle Flow Objects (reconstructed particles)

Algorithm overview

The Eight Main Stages:

- i. Preparation/Tracking
- ii. Loose clustering in ECAL and HCAL
- iii. Topological linking of clearly associated clusters

- v. Iterative reclustering (using tracks)
- vi. Photon Recovery
- vii. Fragment Removal

viii. Formation of final Particle Flow Objects

18 GeV

12 GeV

30 Ge

9 GeV

6 GeV

i) Tracking

- ***** The use of optimal use of tracking information in PFA is essential
- ★ Non trivial for looping tracks (even in a TPC)
- ★ Matching of tracks to endcap clusters is non-trivial
- Probably spent at least as much time on tracking in PandoraPFA as clustering !
- **★** Big effort to use as many tracks in the event as possible
 - ★ helps particularly for lower energy jets
 - **★** motivation I : better energy resolution
 - **★** motivation II : correct measurement of direction
- **★**TPC-oriented: take advantage of pattern recognition capability

(the algorithm would need modification for Si tracker)

e.g. Tracking I : extrapolation

- If a track isn't matched to a cluster previously track was dropped (otherwise double count particle energy)
- ★ Not ideal track better measured + direction

 * e.g. try multiple (successively looser) frack-cluster matching requirements e.g. "circle matching"
 * Now only a few unmatched looping endcap tracks

e.g. Tracking II : V⁰s

 V⁰ identification helps PFA as track momentum better measured than cluster energy

- Previously V⁰ identification for the main topology
- **\overline{\star}** Now extended to very low p_T tracks

(limited by low efficiency in Full Tracking code)

★ Most important for lower energy jets

e.g. Tracking III: Kinks

★ Extended Kink finding to "loopers"

★ Improved (but still fairly crude) reconstruction missing energy

- Consider physics hypothesis, e.g. $K^{\pm} \rightarrow \mu^{\pm} v$
 - Use Helix fits to start and end of tracks to reconstruct missing particle e.g. v
 - Can then reconstruct primary mass
 - If consistent with hypothesis, e.g. m_K use primary track for PFO four-momentum

PandoraPFA reconstructs (some) neutrinos !

ii) ECAL/HCAL Clustering

- **★** Start at inner layers and work outward
- ★ Tracks can be used to "seed" clusters
- **★** Associate hits with existing Clusters
- ★ If no association made form new Cluster
- ***** Simple cone based algorithm

iii) Topological Cluster Association

+By design, clustering errs on side of caution i.e. clusters tend to be split

Philosophy: easier to put things together than split them up
 Clusters are then associated together in two stages:

- 1) Tight cluster association clear topologies
- 2) Loose cluster association fix what's been missed

🛧 <u>Photon ID</u>

* Photon ID plays important role (but does not drive clustering)
 * VERY SIMPLE "cut-based" photon ID applied to all clusters
 * Clusters tagged as photons are immune from association procedure – just left alone

★ Clusters associated using a number of topological rules

Clear Associations:

 Join clusters which are clearly associated making use of high granularity + tracking capability: very few mistakes

iv) Cluster Association Part II

- Have made very clear cluster associations
- Now try "cruder" association strategies
- BUT first associate tracks to clusters (temporary association)
- Use track/cluster energies to "veto" associations, e.g.

Provides some protection against silly mistakes

v) Iterative Reclustering

★ Up to this point, in most cases performance is good – but some difficult cases...

★ At some point reach the limit of "pure" particle flow

• just can't resolve neutral hadron in hadronic shower

* If track momentum and cluster energy inconsistent : RECLUSTER
 e.g.
 30 GeV
 12 GeV
 10 GeV Track

Change clustering parameters/alorithm until cluster splits and get sensible track-cluster match

Iterative Reclustering Strategies

Very Important for higher energy jets

vi) Photon ID/Recovery

Use simple cut-based photon ID in the early (CPU intensive) stages of PandoraPFA

 In the final stages, use improved photon ID based on the expected EM longitudinal profile for cluster energy E₀

$$\Delta E = E_0 \frac{(t/2)^{a-1} e^{-t/2}}{\Gamma(a)} \Delta t \qquad a = 1.25 + \frac{1}{2} \ln E_0 / E_c$$

* Convert cluster into energy depositions per radiation length (use cluster to determine the layer spacing, i.e. geometry indep.)

- Shower Profile fixed by cluster energy
- But fit for best shower start, s
- Normalise areas to unity and calc.

$$f = \sum_{i} |o_i - e_i|$$

- Gives a measure of fractional
- disagreement in obs/exp profiles
- Use f and s to ID photons

Photon Recovery

- **★** With cone clustering algorithm, photons close to early showering charged hadrons can be merged into a single cluster.
- **★** Use longitudinal + transverse profile to recover these
- **★** Essentially, for each cluster associated with a track:
 - project ECAL hits onto plane perpendicular to radial vector to point where track intersects ECAL
 - search for peaks...

statistically compatible with track momentum + cluster passes photonID

Use profiles to "dig out" photons overlapping with hadronic clusters:

- Also look for photons where only a single peak is found
- Implemented by looking at longitudinal profile of "shower"

Only allowed if it results in acceptable track-cluster energy consistency...

NOTE: in PandoraPFA, photon identification is an "iterative", rather than one-off process: different levels of sophistication applied at different stages of algorithm

viii) Fragment removal : basic idea

★ Look for "evidence" that a cluster is associated with another

- ★ Convert to a numerical evidence score E
- ★ Compare to another score "required evidence" for matching, R, based on change in E/p chi-squared, location in ECAL/HCAL etc.
- If E > R then clusters are merged
- **★** Rather ad hoc but works well but works fairly well

B Status at LCWS07

★Full simulation studies using the LDC ILC detector concept with the PandoraPFA algorithm. Use $Z \rightarrow u\overline{u}, d\overline{d}, s\overline{s}$ decays at rest to benchmark performance

★ For jet energies below 100 GeV achieve $\sigma_E/E < 0.30/\sqrt{E_{jj}}$ (GeV) ★ Perhaps more importantly, for jet energies above ~75 GeV achieved $\sigma_{E_j}/E_j < 3.8\%$

★Post-LCWS emphasis shifted to improving low energy performance, important in likely initial phase of ILC at $\sqrt{s} \sim 200-500$ GeV

From LCWS07 to RAL

Step 1: improve low energy performance

- **★** Technical Improvements/bug fixes
 - reduced memory footprint (~ factor 2) by on-the-fly deleting of temporary clusters, rather than waiting to event end
- ★ Improved track ID

From LCWS to RAL cont.

Step 2: increase functionality

★ Now compatible with digital HCAL (and digital ECAL e.g. MAPs-based)

(PandoraPFAv02 +trackCheater)	E _{JET}	σ _E /E = <mark>α</mark> /√E _{jj} cosθ <0.7
LDC00Sc	100 GeV	29.3 %
LDC00RPC	100 GeV	30.3 %

 very similar performance (digital PFA is not fully optimised)

★ Can now use either TrackCheater or FullLDCTracking

- required rewrite of V⁰ finding + tweaks for kinks
- note: FullLDCTracking does not find non-vertex. curlers, i.e. reduced kink/V⁰ efficiency

Step 3: compatibility with new LDC models "ILD ready"

- Include LumiCAL, ECAL Plug. + include MUON hits (not yet used)
- Made more robust better error/warning reporting

LCWS → RAL: LDC00 (Tesla TDR)

	LCWS07 PandoraPFA v01-01			-		PandoraPl	-Α v02- α
acks	E _{JET}	$\sigma_{\rm E}/{\rm E} = \frac{\alpha}{\sqrt{E_{\rm jj}}}$ cosθ <0.7	σ _Ε /Ε _j		E _{JET}	$\sigma_{\rm E}/{\rm E} = \frac{\alpha}{\sqrt{E_{\rm jj}}}$ cosθ <0.7	σ _Ε /Ε _j
E	45 GeV	0.295	4.4 %		45 GeV	0.226	3.3 %
tec	100 GeV	0.305	3.0 %	~ /	100 GeV	0.293	2.9 %
lea	180 GeV	0.418	3.1 %		180 GeV	0.392	2.9 %
さ	250 GeV	0.534	3.3 %		250 GeV	0.534	3.3 %

★For LDC00:

- Only slight degradation when using FullLDCTracking
- Difference may be due to degraded kink finding
- Track quality cuts not fully optimised (i.e. how many hits required, use Si only tracks?)

D	PandoraPFA v02-01				
ackin	E _{JET}	$\mathbf{E}_{JET} \begin{vmatrix} \sigma_{E} / E = \alpha / \sqrt{E_{jj}} \\ \cos\theta < 0.7 \end{vmatrix}$			
DCTr	45 GeV	0.235	3.5 %		
	100 GeV	0.306	3.1 %		
╡	180 GeV	0.427	3.2 %		
	250 GeV	0.565	3.6 %		

Bottom Line...

* Particle flow can achieve ILC "goal" of σ_E/E_j < 3.8 %
* For lower energy jets Particle Flow gives unprecedented levels of performance, e.g. @ 45 GeV : 3.5% c.f. ~10% (ALEPH)
* "Calorimetric" performance (α) degrades for higher energy jets + current code is not perfect - can do better
* would like to investigate the ultimate limit of PFA calorimetry at higher energies...

PARTICLE FLOW CALORIMETRY WORKS !

... at least in simulation

Hadron Shower Models

*People have rightly expressed concerns about sensitivity to hadron shower models...

- **★**First look: compare LHEP & QGSP_BERT models.
- ★Large model differences
 - 30 % in raw energy deposition
 - Iongitudinal/transverse development

(PandoraPFAv02 +trackCheater)		E _{JET}	σ _E /E = α/√E _{jj} cosθ <0.7
LDC00Sc	QGSP_BERT	45 GeV	22.6 %
LDC00Sc	LHEP	45 GeV	23.2 %
LDC00Sc	QGSP_BERT	100 GeV	29.3 %
LDC00Sc	LHEP	100 GeV	30.2 %

★Differences rather small (+code not re-optimised for LHEP)

★Sensitivity to Hadronic shower development may not be so large

- needs more study
- ultimately CALICE data will show the way

Ongoing Work

★ Main emphasis of recent work

- Preparation for ILD mass simulation/reconstruction
- Make PandoraPFA fully compatible with new LDC detector model
 - significant changes to simulation (almost all sub-detectors)
 - including more realism...
- Won't discuss details here:
 - but be aware that some parts of code now LDC specific,
 - e.g. energy corrections for ECAL gaps
 - all driven by switches in configuration won't impact non-LDC studies (as long as run correctly – pay attention to warning/error messages)

BAD: realism in detector model → more complexity in software GOOD: also gives insight into sub-detector design

★ Next, how to improve PandoraPFA ?

- emphasis now on high energy performance

When PandoraPFA Goes Bad

A few poorly reconstructed di-jet events at \sqrt{s} = 360 GeV : i) Leakage

★How to improve performance ?

- plan to utilise detailed structure of hadronic showers...
- i.e. try different clustering algorithms in reclustering
- PandoraPFA being restructured for this and to interface to GLD strip clustering

6 Detector Optimisation (nothing new until ILD studies)

- Investigated HCAL Depth (interaction lengths)
 - Generated Z→uds events with a large HCAL (63 layers)
 - approx 7 λ_{I}
 - In PandoraPFA introduced a configuration variable to truncate the HCAL to arbitrary depth
 - Takes account of hexadecagonal geometry

NOTE: no attempt to account for leakage – i.e. using muon hits - this is a worse case

e.g. change HCAL tile size $1x1 \rightarrow 10x10 \text{ mm}^2$

Radius vs Field

- **★** These types of studies are interesting.
- **★** They highlight what matters for a particular PFA implementation
- ★ But how does this feed through to physics ?

PandoraPerfectPFA

★ PerfectPFA option in Pandora

- <parameter name="PerfectPFA" type="int"> 1 </parameter>
- **★** Uses MC information to create the ProtoClusters
- ★ The rest of the algorithm is the same
- ★ Useful tool
- Process same events/same analysis and compare PFA to perfect PFA

i) How close to being "Perfect" is PandoraPFA?

F	$\sigma_{\rm E}/{\rm E} = \alpha/\sqrt{{\rm E}/{\rm G}}$	eV) cosθ <0.7		
□ JET	PerfectPandora	PandoraPFA		
100 GeV	0.22	0.31	Still somew	ay to go
180 GeV	0.30	0.43	– needs st	study

Cheated Tracks+PFA Reco. Tracks+PFA

PFA impact in a real physics process

e.g.
$$e^+e^- \rightarrow \nu \overline{\nu} W^+W^- \rightarrow \nu \overline{\nu} q q q q$$
 $\sqrt{s} = 800 \,\text{GeV}$

First compare visible energy from PFA with expected (i.e. after removing neutrinos/forward tracks+clusters)

Random Comments

Deficiencies:

- ★ PandoraPFA has evolved solely with the aim of improving performance ... never overly concerned with niceties...
- ★ Very little has been optimised:
 - Photon ID good be better
 - Photon Recovery crude
 - Fragment Removal <u>very crude</u>

Plenty of room for improvement

Why does PandoraPFA work reasonably well?

- ★ PFA = much more than clustering
 - basic clustering algorithm developed in about a week shortly after Snowmass – essentially unchanged
- **★** Lessons learnt in developing code:
 - advantages in having a single "coherent" approach
 - always concentrated on optimising jet E performance, not photonID efficiencies etc.
 - extreme care with all stages avoid unnecessary mistakes
 - great care needed in track/cluster matching
 - use of track momentum cluster energy to spot to PFA errors absolutely vital
 - PFA reconstruction is an iterative process, use more sophisticated techniques as knowledge of event improves

8 Summary/Outlook

Performance:

★ PandoraPFA with FullLDCTracking achieves good performance

 $\sigma_{E_j}/E_j < 3.6\%$ for 45-250 GeV jets LDC00

- ★ Particle Flow approach to calorimetry at ILC now proven
- ★ Now want to investigate full potential of PFA for ILC/...

Towards ILD:

- ***** v02-01 works with latest LDC detector model
- Current effort has shifted towards optimisation for LDC models to be used in ILD studies (will be used to process N Million events)
- Medium-term (Summer) PFA optimisation/studies:
 - Implement new clustering algorithms for reclustering
 - ★ Potential for many interesting detector studies
 - Intend to start with detailed PFA / HCAL study
 - New LDC HCAL model now in Mokka makes this possible

Finally, a couple of SiD-centric comments:

- ***** Possible lessons from PandoraPFA development
- ★ For SiD PFA performance essential to use full track reconstruction