

SiD Engineering Status Report

Kurt Krempetz

Outline of Talk

- I) Introduction/History of the SiD Engineering Group.
- II) Discuss Progress and Work since the Workshop at SLAC on 1/29/08.
- III) Discuss Specific Engineering Issue in regards to Simulation Studies.

SiD Engineering Group Participants

Engineers	Physicists
– ANL	
 Victor Guarino→Hcal 	
– FNAL	
 Bob Wands→FEA 	Bill Cooper
 Joe Howell→FNAL Test Beam 	
 Kurt Krempetz→Integration 	
 Walter Jaskierny→Solenoid Electrical 	
– LAPP	
Claude Girard	Yannis Karyotakis
Franck Cadoux	
 Nicolas Geffroy→Hcal 	
– PSL	
 Farshid Feyzi→Muon Steel 	
– SLAC	
 Jim Krebs→EndDoors 	Marty Breidenbach
 Marco Oriunno→Ecal 	Tom Markiewicz
 Wes Craddock→Solenoid 	
– RAL	
 Andy Nichols → Tracking 	Phil Burrows
 U of Texas, Arlington 	
•	Andy White

Subsystem Liaisons to the Engineering Group

- Vertex→ Bill Cooper
- Silicon Tracker \rightarrow Tim Nelson
- Ecal→Marty Breidenbach
- Hcal→Andy White
- Muons→Henry Band
- Forward→Bill Morse
- MDI→Tom Markiewicz

SiD Engineering Group-History

- Formed in the summer '07
- Meet via Webex on Wednesdays @10:00 (US Central Time Zone) ~ every other week
- If interested send me mail (<u>Krempetz@fnal.gov</u>) to get on meeting notice list.
- Meetings/Workshops
 - IR Workshop Sept '07
 - ALCPG Oct '07
 - SLAC SiD Workshop Jan '08

• SiD Engineering Group Function/Purpose

• Realism into the Detector

- Supports
- Tolerances
- Fabrication Limitations
- Cost Estimates
- Safety Issues
- Help integrate the detector sub-system into an overall
 Detector
 - Define Clearances
 - Assembly
 - Cables and utilities
- Help with the design of different Detector Sub-systems
- Document the design choices and the design
- Document and manage changes

IR Engineering General Safety

- Radiation
 - Self Shielding Detector
- Fire Safety
 - No Flammable Gases
 - Halogen-free Cables
 - Smoke Sensor in all sub detectors
- Seismic Safety Site dependent
- ODH Issues
- Magnet Fringe Fields

IR Engineering Meeting Baseline Assembly Scenario

- Solenoid tested to full field on surface
- Other Sub-systems are also constructed and tested on surface.
- Defines a surface building
 - -Roughly 24mX24mX24m
 - -500 tonnes crane (smaller hoists should also be available)

IR Engineering Opening Procedures

- on beamline
 - Need to access Electronics \rightarrow End caps open 2m
 - Roughly 16m total
 - Small Crane system (~5tons)
 - Time Duration \rightarrow 20hrs
 - Power down magnet-4hrs
 - Open End Caps- 4hrs
 - Perform work- 4hrs
 - Close End Caps- 4hrs
 - Power up magnet- 4hrs

IR Engineering Detector Opened 2 M

Kurt Krempetz

• Si D •

IR Engineering Opening Procedures

- off beamline
 - Detector Motion \rightarrow End caps open 2m
 - Frequently for Electronics maintenance
 - Detector Motion → End caps open 3m
 - Possible every 6 months for Vertex and Tracker maintenance
 - Possible every few years for Vertex Detector replacement
 - Time Duration for Opening or Closing \rightarrow about 1 week
 - Detector Motion \rightarrow End caps open 6m
 - Possible every 5 years for Upgrades
 - Tracker Detector System
 - ECal Silicon Detectors
 - HCal RPC's
 - Muon RPC's
 - Crane System for above scenarios (~25 tons plus another smaller hoist)

IR Engineering Detector Opened 6M

Kurt Krempetz

Beam Tube From LumiCal to LumiCal-Cooper/Krempetz-Fermilab

Kurt Krempetz

Beam Tube Deflections-with Vertex Detector

Kurt Krempetz

Hcal Absorber Plates

- Try to design one common absorber plate configuration
 - Plate thickness-20mm
 - Gap thickness-8mm
 - No point cracks to IP, minimize all cracks/dead space
 - Detector modules are removable from gap
 - Absorber Material might change

Examples of tilt level as a function of the tangent circle radius

• Si D

Several stringers are welded along the module

Detail of a detection layer

A detection layer ("sandwich part") consists in a chamber rigidified with two thin steel plates.

Protection and stiffness !

Si D

The whole system (Hcal & Ecal) slides inside the magnet thanks to rails.

SiD Solenoid Baseline

- 5 Tesla
- 5m diameter clear bore
- 5m Long
- 6 Layers
- Stored Energy 1.4 GJ
- Water Cooled Dump Resistor

Flux Return

- Octagonal Barrel and Endcaps
- Fringe Field Issues outside the detector
 - <100 gauss</p>

Fringe Fields - Comparison of Results for Three Curves

Recent Work

- Beam tube Studies
- Vertex Detector Mechanics
- Ecal
- Hcal
- Iron Barrel
- End Wall/Endcap
- Magnetic Field Calculations with a Bucking coil
- MDI Issues

Other Beam Tube Proposals HCal Configurations

Kurt Krempetz

Vertex Detector/Beam Tube Support Exoskeleton

Kurt Krempetz

Optimization of the EMcal-Hcal interface, Option 1:

10mm gap (20 max allowed for physics)

60mm interconnection region integrated in the EMcal wedge envelope

20% of local loss of radiation length

• Sip • Optimization of the EMcal-Hcal interface, Option 2:

10mm gap (20 max allowed for physics)

60mm interconnection region outside the EMcal wedge envelope

Notches on the first Hcal plate: absorbers

no local loss of radiation length vs some loss of interaction length

Kurt Krempetz

Proposed Return Flux End Layout

33

• <u>Si</u>D •

Return Flux Barrel Modules

Kurt Krempetz

RAL Workshop-4/14/08

Barrel Iron Assembly

Modified End Wall End Cap Design

- Uses continuous cast steel plates rolled to 180mm thickness
- 40mm gaps for muon identification chambers
- Plate-to-plate spacers are staggered for better muon identification coverage
- Welded and bolted construction
- 100mm thick inner support cylinder

• Si D •

• Si D

Using Bucking Coils to Reduce Fringe Field Outside of SiD Barrel

Kurt Krempetz

• Sip • Contours of Constant B-modulus – Carbon Steel Support Beam, with and without Bucking Coil

Kurt Krempetz

2m Door opening Procedure, on the beam

Kurt Krempetz

Proposed Pacman Configuration

Kurt Krempetz

Proposed Pacman Configuration-Opening

Kurt Krempetz

Specific Engineering Issues in regard to Simulation Studies

- 1) HCal- Overall Detector Thickness; Crack configurations Proposals; Number of Detector Gaps needed
- 2) Si Tracker- Moving Barrel #1 Radius out to allow for QD0 Support Proposal
- 3) Vertex/Forward Detectors-Different Beam Tube Configurations
- 4) ECal-Overall Detector Thickness needed; Varying Absorber Plate Thickness; Number of Detector Gaps needed
- 5) Solenoid-DID magnet required
- 6) Muon System-Overall Detector Thickness; Varying Absorber Plate Thickness; Number of Detector Gaps needed

Global Parameters

Detector	Radius (m)		Axial (z) (m)			
	Min	Max	Min	Max		
Vertex Detector	0.0140	0.0600	0.0000	0.1800		
Central Tracking	0.2060	1.2500	0.0000	1.6067		
Endcap Tracker	0.2060	0.4920	0.8499	1.3744		
Barrel Ecal	1.2650	1.4088	0.0000	1.7854		
Endcap Ecal	0.2060	1.2650	1.6467	1.7854		
Barrel Hcal	1.4188	2.3708	0.0000	2.7374		
Endcap Hcal	0.2060	1.4088	1.7904	2.7374		
Coil	2.4644	3.2654	0.0000	2.7374		
Barrel Iron	3.2754	5.9154	0.0000	2.7374		
Endcap Iron	0.2060	5.9154	2.7524	5.3924		
· · · · · · · · · · · · · · · · · · ·						
Inter-Detetcor Gaps	m					
· · ·						
DR GAP Trkr EMCal	0.0150					
DR GAP EMCal Hcal	0.0100					
DR GAP Hcal Cryostat	0.0936					
DR Gap Cryostat Steel	0.0100					
DR Gap Becal ECEcal	0.0000					
DR Gap BHcal ECHcal	0.0100					
DZ Gap CT ECEcal	0.2723					
DZ Gap BEcal ECHcal	0.0050					
DZ Gap ECEcal ECHcal	0.0050					
DZ Gap BHcal Endron	0.0150					
<u>eapanen</u>	0.0.00					
Note gap requirements:	If subdetec	tors only a	et inserted	once>10n	nm dap	
	If subdetectors only move during opening/closing>15m					
	No cables/pipes included					