

# SiD Global Parameter Optimization using Pandora PFA

#### 15.04.2008 M. Stanitzki

#### **STFC-Rutherford Appleton Laboratory**





## The Idea

- Use the current best Particle Flow Algorithm
  - PandoraPFA by Mark Thomson
- Start optimizing SiD
  - r,z,T,
  - layers, segmentation
  - material, technology

More Difficult

- Caveat : Only works within Marlin Framework
- No SiD detector model available in this framework
- Have to use a SiD look-alike, the SiDish



## The setup

- Use PandoraPFA 2.0 & LCPHYS
- Start of with LDC00Sc (Reference Point)
- Then go to SIDish
- Use track cheating
  - tracking shouldn't matter ... to first order
- Vary parameters
  - radius
  - Z
  - field
  - layers
  - ...



#### LDC00Sc

- Tracker radius=1.69 m
- Tracker Z=2.73 m
- ECAL SiW 30+10 layers, 1x1 cm tiles
  - 1.4 mm/4.2 mm W + 2.5mm Gaps
- HCAL Fe-Scint 40 layers 3x3 cm tiles
  - 18 mm Iron + 7.5 mm Gap
- 4 T Field
- Basically the old Tesla Design
- A detector that will never be build ...



### The "SIDish"

- Tracker radius=1.25m
- Tracker Z=1.7 m
- ECAL SiW 20+10 layers, 1x1 cm tiles
- HCAL Fe-Scint 40 layers 3x3 cm tiles
- Same Calorimeter layout as LDC00Sc (besides ECAL 30+10->20+10)
- 5 T Field





# The different variations

- Vary Field
  - 4,5,6 T
- Vary R
  - 1.0, 1.25, 1.5 m
- Vary Z
  - 1.5, 1.7,1.9 m
- Vary ECAL layers
  - 30,40





#### The different detectors

| Detector TAG      | B-field<br>(T) | ECAL<br>layers | ECAL cell<br>size | HCAL<br>layers | HCAL cell<br>size | Tracker<br>radius (mm) | Tracker<br>length<br>(mm) |
|-------------------|----------------|----------------|-------------------|----------------|-------------------|------------------------|---------------------------|
| LDC00Sc           | 4              | 40             | 1x1               | 40             | 3x3               | 1690                   | 2730                      |
| SIDish            | 5              | 30             | 1x1               | 40             | 3x3               | 1250                   | 1700                      |
| SIDish_r10_z17    | 5              | 30             | 1x1               | 40             | 3x3               | 1000                   | 1700                      |
| SIDish_r15_z17    | 5              | 30             | 1x1               | 40             | 3x3               | 1500                   | 1700                      |
| SIDish_r125_z15   | 5              | 30             | 1x1               | 40             | 3x3               | 1250                   | 1500                      |
| SIDish_r125_z19   | 5              | 30             | 1x1               | 40             | 3x3               | 1250                   | 1900                      |
| SIDish_4T         | 4              | 30             | 1x1               | 40             | 3x3               | 1250                   | 1700                      |
| SIDish_6T         | 6              | 30             | 1x1               | 40             | 3x3               | 1250                   | 1700                      |
| SIDish_ecal40     | 5              | 40             | 1x1               | 40             | 3x3               | 1250                   | 1700                      |
| SIDish_ecal_05x05 | 5              | 30             | 0.5x0.5           | 40             | 3x3               | 1250                   | 1700                      |
| SIDish_45T        | 4.5            | 30             | 1x1               | 40             | 3x3               | 1250                   | 1700                      |
| SIDish_55T        | 5.5            | 30             | 1x1               | 40             | 3x3               | 1250                   | 1700                      |





#### **Current Status**

- For each point
  - photons, hadrons, uds jets (45,100,250 GeV)
  - approx 45000 events per point
  - Check gear file is correct
  - for all points calibrate PandoraPFA
  - have photons, hadrons, uds jets for 45,100 (some at 250) GeV
- Simulation takes very long time
  - 1000 Z->uds (45 GeV) ~ 44 hours





#### The results

- Results for 45 GeV & 100 GeV jets
- They are **PRELIMINARY**
- Numbers quoted are
  - cos(Thrust) < 0.7 : Barrel Events</pre>
- There are a set of caveats
  - Calibrate Response for different detector variations
  - Calibration can be retuned with existing samples
- Use latest Mokka Version with better HCAL driver ...
- So numbers could change slightly ...



# • SiD •

## **Grand Overview**

| Detector TAG      | rms90 | ) (91 | GeV) | rms90 | (200 | ) GeV) |
|-------------------|-------|-------|------|-------|------|--------|
| LDC00Sc           | 24.6  | ±     | 0.3  | 29.7  | ±    | 0.5    |
| SIDish            | 27.9  | ±     | 0.4  | 35.4  | ±    | 0.7    |
| SIDish_r10_z17    | 30.4  | ±     | 0.4  | 42.5  | ±    | 0.8    |
| SIDish_r15_z17    | 27.7  | ±     | 0.4  | 34.4  | ±    | 0.6    |
| SIDish_r125_z15   | 29.0  | ±     | 0.4  | 34.4  | ±    | 0.6    |
| SIDish_r125_z19   | 28.5  | ±     | 0.4  | 36.4  | ±    | 0.7    |
| SIDish_4T         | 28.9  | ±     | 0.4  | 39.4  | ±    | 0.7    |
| SIDish_6T         | 28.6  | ±     | 0.4  | 34.2  | ±    | 0.6    |
| SIDish_ecal40     | 27.1  | ±     | 0.3  | 33.9  | ±    | 0.6    |
| SIDish_ecal_05x05 | 28.1  | ±     | 0.4  | 35.7  | ±    | 0.7    |



# • SiD •

### **Radial Dependence**

#### Radial Dependence 91 GeV







# **Radial Dependence (II)**







#### Z dependence





# Z dependence (II)

#### z Dependence 200 GeV







#### **B** Field



Science & Technology Facilities Council Rutherford Appleton Laboratory



### **B** Field (II)



Science & Technology Facilities Council Rutherford Appleton Laboratory



### **Energy Dependence**







# **Jet Energy Resolution**



Science & Technology Facilities Council Rutherford Appleton Laboratory

# **Using Mark's scaling Law**



Science & Technology Facilities Council Rutherford Appleton Laboratory

# Mark's scaling Law (II)





20



#### Some comments

- It is clear, that making R bigger does help
- Z is less obvious
- Probably we should scale Z and R at the same time
- B field only has an impact at higher energies
- What should we focus on for discussion:
  - Make the calorimeter deeper
  - move out the ECAL (1.25 to 1.5 meters ...)
  - Is 4 or 4.5 T sufficient ?

#### • PLEASE COMMENT !





#### Plans

- Use 500 GeV qq samples (being generated at MIT)
- Run with Digital HCAL samples
- Use latest Mokka for HCAL studies
  - Depth
  - Layers
  - Segmentation ...
- More longterm
  - use org.lcsim Reconstruction via LCIO





#### Summary

- First results at 200 GeV available
  - The ILC jet physics region ...
- What do want to learn?
  - What is the best PFA detector
    - performance
    - affordable
    - passes the laugh test
  - Stay tuned for Marty's talk
- Will continue working on this, with 500 GeV samples as well
- Thanks to Ray Cowan & Steve Worm for the help in running jobs





## **The Setup**

- •CLHEP 2.0.2.2
- •LCIO v01-09
- •ROOT v5.16.00
- •GEAR v00-08
- •GEANT 4.9.0.p01

- Mokka 06-04-p03
- Marlin v00-09-10
- MarlinUtil v00-05
- MarlinReco v00-05
- PandoraPFA v02-00

