
PFA status
Mat Charles

U. Iowa



Talk overview

•Executive summary

• The goalposts

• Algorithm overview

• Getting & running the PFA

• Performance snapshot

•More detailed walk-through of algorithm

•Next steps & a note on manpower

2



Goals (1)

• In a nutshell, we want a PFA that:

• is realistic

• has good enough performance to do the physics

• can help us make technology choices

•As rough figure of merit, use dijet mass residuals for
e+e− → Z(νν) Z(qq) @ 500 GeV for sid01 (q=uds), |cosϑ|<0.8

• Proposed in previous workshops as OK for physics:

3

dM/M ~ 3% – 4%

i.e. dM ≤ 3.6 GeV or so



Goals (2)

•What is achievable?

4

Perfect pattern recognition (PPR):  2.35 GeV

And track matched to cluster: 2.54 GeV

And passes E/p veto: 3.41 GeV

DTree clustering: 2.8 GeV

And track matched to cluster: ??? GeV

And passes E/p veto: ??? GeV
Guesstimate: about 3.5-3.9 GeV

Right now, goal is to push resolution down to ~ 4.0 GeV.
(Once we’re there, can think about going further...)



Algorithm overview

•Find photons. Set to one side.

• Run DTreeClusterer on remaining hits

•Within each DTreeCluster, look for substructure

• MIP segments, clumps, etc

• Define score to link them based on geometric quantities

• Fuzzy clustering for individual / small-cluster / halo hits

• Extrapolate tracks to calorimeter, match to “seed” clusters

• Build charged showers outwards from seeds

• Use links based on score, E/p (complicated -- more detail later!)

• Optionally, apply hard E/p veto after final clustering

• Build neutral hadron showers from remaining clusters
5



Getting & running the PFA

•Get up-to-date CVS checkout & build

•Minimal code
(see example at org.lcsim.pfa.structural.RunAndWriteOutPFA)

add(new NonTrivialPFA());

add(new SetUpDTreeForReclustering());

add(new ReclusterDTreeDriver("DTreeClusters", 
"FSReconTracks", "ReconFSParticles"));

•Output lists:

• DTreeReclusteredParticles

• DTreeReclusteredParticles_withEoverPveto

• DTreeReclusteredParticles_forConfusionMatrix

•Additional code to flush & write out needed

• Again, see org.lcsim.pfa.structural.RunAndWriteOutPFA
6

the one you want



Current performance

7

)2Dijet mass residual (GeV/c
-40 -30 -20 -10 0 10 20 30 40

E
n

tr
ie

s
 p

e
r 

1
 G

e
V

 b
in

0

20

40

60

80

100

120

140

160

180
: -1.96 GeV

90
µ

: 4.37 GeV
90

rms

e+e− → Z(νν) Z(qq) @ 500 GeV for sid01 (q=uds), |cosϑ|<0.8

4.61 GeV in March (with old calibration)
4.87 GeV at January SLAC workshop
5.46 GeV at October FNAL workshop (NonTrivialPFA)

For comparison:



Algorithm in detail

8



Track extrapolation
•Not using real tracking -- but trying to keep things realistic.

• Start with Ron’s FSReconTracks list of tracks which are 
reconstructible

• Find position of 3 outermost truth hits in tracker

• Extrapolate to calorimeter as a helix

• Look for matching cluster (next slides) in ECAL -- preferably a MIP

• This works pretty well most of the time, but can go wrong for:

• Low-momentum tracks

• Loopers

• Material interactions / decays in flight near ECAL

• ... but then, those cases are hard for real tracking too.

•Make a note of any unmatched tracks for later.
9



Finding photons

•Use Ron’s updated photon finder -- efficiency & purity 
around 90%

•Check if there is a track directly connected to the photon

• If no track match, treat as pure photon and NEVER assign hits to a 
charged shower.

• If track match and cluster E = track p, treat as electron

• If track match and cluster E ≠ track p, split up photon into pieces (see 
next slide)

• Aim to handle case of nearby/overlapping photon & track

• Piece directly connected to tracks is treated as charged

• Fuzzy clustering for tiny pieces (<4 hits)

• Rest is treated as photon

10



Photon splitting algorithm

11

!!" #$%&'($%&)$*+,-./!01)
! 2-3/-)3-)!00./)*34./,)305)67/8)7+-63/5

! 9/3:8,):30);.)+,.5)-7)<,..5= :*+,-./,

! %,,7:!3-.)>!-,)6!->).?!,-!01)$*+,-./,

! @A)07)3,,7:!3-!70)B35.)A7/B)0.6)$*+,-./

! 2!BC*.):70.);3,.5)3*17/!->B)

2!BC*.):70.)3*17/!->B

;3,.5)70):+//.0-)5!/.:-!70

D)355!-!703*)E)C!?.*,)))

$70.,);3,.5)70).!->./F

!0!-!3*)G$)5!/.:-!70)))7/

:+//.0-)G$)5!/.:-!70

! " # $ % & '

H0B3-:>.5)>!-,),..5,)

0.6):*+,-./

@0!-!3*):*+,-./

5!/.:-!70

G3/3B.-./,F

" :70.)301*.

" 355!-!703*)C!?.*,

!"#$%&'()*+,$-(./0$1*+2%$34546778 9*+:$;<&-%&= >

I use a ~ 90° cone 
and allow it to skip 

one layer.

Neighbours of seed 
in same layer also 

picked up.
Idea taken from Mark Thomson, but 
implemented separately in org.lcsim



Structure in DTrees

•Apply DTree clusterer to remaining (non-photon) hits

• Goal here is to find “envelopes” for showers so that fuzzy/halo hits 
get assigned back to their parent properly

• Inside each DTree cluster, look for structure:

• Clumps with internal structure:
• MIPs & MIP-like segments (projective & non-projective)

• Clumps (high local hit density)

• Other hits (share with nearby pieces in same DTree)

• Large clumps without internal structure treated as blocks
(>= 20 hits in ECAL, >= 15 hits in HCAL)

• Smaller clumps shared with nearby clusters (fuzzy)

12

[see next slide]



Finding MIPs (1)

•Primary MIP finder is very simple:

• Use only isolated or semi-isolated (∂) hits

• Look for neighbouring hits in sequential layers

• ... but because “neighbouring” is defined in a projective way, 
that can fail for non-projective or curved tracks.

13
IP Track

“Neighbours” in next layer

org.lcsim.recon.cluster.mipfinder.TrackClusterDriver



Finding MIPs (2)

•Work-around: Second pass with a different MIP-finder

•Taking (semi-)isolated hits, find 3-hit stubs in sequential layers

• Expand outwards from both ends of stub

• Linear extrapolation based on outermost hits

• Cuts on direction, distance to next hit

• Allowed to skip a layer from time to time

• Lots of fiddly code to merge/pair stubs & resolve ambiguities

•Only run it within a DTree cluster -- combinatorics are too 
awful to run it on an entire event

14

org.lcsim.recon.cluster.mipfinder.NonProjectiveMipFinder



Notes on scoring
•For any given pair of clusters, can define a score between 0 

and 1 to describe how likely they are to be connected

•MIP-MIP and MIP-clump links use likelihood computed with 
geometrical quantities like proximity, DOCA, etc.

• Penalty if not both inside same DTree cluster

•MIP links to other things (larger clusters treated as blocks, 
seed photons, seed small clusters) based on proximity and 
pointing

•Clump-clump, clump-smallSeed, block-block, block-smallSeed 
links based on proximity & opening angle

• Some link types not included (e.g. photon seed to block)

• Scoring algorithms & constants based mostly on my 
judgement -- may not be fully optimal. 15



Building charged showers (1)

•Basic idea: build shower up from seed following simple rules:

• Start with lowest-momentum tracks and work up

• Don’t take any clusters already assigned to a lower-momentum track ➡

• Pick up highest-rated links first as long as they have score > threshold

• If picking up a cluster x by following a link with score sx, also pick up any 
unassigned clusters connected to x with score >= sx ➡

• Stop when no more links available with

• score > threshold

• Eclus < √(p2+m2) + tolerance after following link

• Add more clusters if possible (see slide after next)

• If shower incomplete (E << p), loosen threshold/tolerance and 
iterate.

16



Illustrations

17

1 GeV track

20 GeV neutral hadron 
with secondary charged

Even if initial link looks 
good, don’t make it unless 
you can accept the things 

connected to it.
• If picking up a cluster x by 

following a link with score sx, also 
pick up any unassigned clusters 
connected to x with score >= sx

• Don’t take any clusters already 
assigned to a lower-momentum 
track

2 GeV track 25 GeV track



Building charged showers (2)

•At the end of each iteration (i.e. after building showers for all 
tracks), search for this case:

• Cluster C isn’t attached to any shower

• C is not a photon

• The best potential link for cluster C was to a track T

• E/p for track T wouldn’t be too high if C was added to its shower

• ... then add C to the shower of track T

• This helps a LOT

• In cases where showers are close by / overlapping and the code gets 
paralyzed with indecision, this helps it break the deadlock

• ... but sometimes introduces mistakes.

18



Building charged showers (3)

•When done building shower, look at E/p for overall veto

• E >> p is rare (by construction)

• E << p more common -- veto to prevent double-counting 
(allow ±2.5σ)

• Exception: punch-through tracks (hits in last layers of HCAL) 
are allowed to under-shoot

19



Building charged showers (4)

• Sometimes 2+ charged showers 
are hopelessly entangled...
... or one shower steals a critical 
piece of another

• In that case, treat them as a 
single “jet” and look at ΣE/Σp

•Not optimal use of information, 
but better than failing altogether

•Careful about using punch-
through showers in jets -- easy 
to lose information.

20

15 GeV track

25 GeV track

Tracker Calorimeter

0.5 GeV 
MIP cluster

0.6 GeV 
MIP cluster

40 GeV clump

10 GeV track

60 GeV track

0.5 GeV 
MIP cluster

1 GeV MIP 
cluster

1 GeV MIP 
cluster

punch 
through

0.5 GeV MIP cluster

8 GeV clump

Second yellow MIP gets stolen by blue shower



Neutral hadron showers

•Any substantial clusters not used in a charged shower are 
assumed to be from neutral hadron

• Build NH showers same way as charged showers, except 
with no E/p cut and score threshold fixed

21



Putting the output together

•Make ReconstructedParticle objects:

• Photons: 4-vector based on cluster position & calorimeter energy

• Charged showers passing E/p veto and tracks that don’t reach the 
calorimeter (low-pT): 4-vector [etc] based on track momentum 
(assuming pion mass)

• Charged showers failing E/p veto: 4-vector based on cluster position 
and calorimeter energy

• Neutral hadron showers: 4-vector based on cluster position and 
calorimeter energy

22



Confusion matrix
•Output from Ron’s diagnostic routines shows where all of 

the energy is going:

23

ZZ Truth: photon
Truth: tracked 

particle
Truth: neutral 

hadron
Sum

Reco: photon 108,368 5,979 4,247
118,594

Purity: 91.4%

Reco: tracked 
particle

8,679 227,475 15,539
251,693

Purity: 90.4%

Reco: neutral 
hadron

6,905 22,673 42,666
72,244

Purity: 59.1%

Unused 1,037 9,177 2,214 12,428

Sum
124,989

Effic: 86.7%
265,304

Effic: 85.7%
64,666

Effic: 66.0%

Diagonal elements: correct ID
Off-diagonal elements: mis-identified energy
Charged-neutral confusion especially bad...



Next steps

• Improve algorithm itself:

• Study outlier events which are badly wrong

• Systematic bias for different classes of event?

• Scoring: More formal optimization of PFA constants? Make more use 
of likelihood selector tools? Add variables?

• Improve use of output:

• Look for π0, η?

• Look at other designs:

• So far, only tuned for sid01

• Quick look at sid01_scint => will need to retune for scint HCAL

• Work with MIT group to scan 

24



People
• I am moving to a new job in 4Q08 -- won’t be on ILC after.

• Replacement postdoc lined up to join U. Iowa group & 
overlap with me for few months. (Nominally part-time on 
ILC, but will be full-time at the start.)

•MIT group working on scan of parameter space

•A lot of the pieces are produced by other people, e.g.

• DigiSim (Guilherme)

• Photon-finding & ID (Ron+Qingmin)

• Calibration (Ron)

• Track list (currently using Ron’s)

• DTree clusterer (Guilherme et al)

• etc

(modular approach has made life so much easier...) 25


