PFA status

Mat Charles U. Iowa

Talk overview

• Executive summary

- The goalposts
- Algorithm overview
- Getting & running the PFA
- Performance snapshot
- More detailed walk-through of algorithm
- Next steps & a note on manpower

Goals (I)

• In a nutshell, we want a PFA that:

- is realistic
- has good enough performance to do the physics
- can help us make technology choices
- As rough figure of merit, use dijet mass residuals for $e^+e^- \rightarrow Z(\nu\nu) Z(qq) @ 500 \text{ GeV}$ for sid01 (q=uds), $|\cos \theta| < 0.8$
- Proposed in previous workshops as OK for physics:

dM/M ~ 3% – 4%

i.e. $dM \leq 3.6$ GeV or so

Goals (2)

• What is achievable?

Right now, goal is to push resolution down to ~ 4.0 GeV. (Once we're there, can think about going further...)

Algorithm overview

- Find photons. Set to one side.
- Run DTreeClusterer on remaining hits
- Within each DTreeCluster, look for substructure
 - MIP segments, clumps, etc
 - Define score to link them based on geometric quantities
 - Fuzzy clustering for individual / small-cluster / halo hits
- Extrapolate tracks to calorimeter, match to "seed" clusters
- Build charged showers outwards from seeds
 - Use links based on score, E/p (complicated -- more detail later!)
 - Optionally, apply hard E/p veto after final clustering
- Build neutral hadron showers from remaining clusters

Getting & running the PFA

- Get up-to-date CVS checkout & build
- Minimal code

(see example at org.lcsim.pfa.structural.RunAndWriteOutPFA)

```
add(new NonTrivialPFA());
```

```
add(new SetUpDTreeForReclustering());
```

```
add(new ReclusterDTreeDriver("DTreeClusters",
"FSReconTracks", "ReconFSParticles"));
```

• Output lists:

- DTreeReclusteredParticles
- DTreeReclusteredParticles_forConfusionMatrix
- Additional code to flush & write out needed
 - Again, see org.lcsim.pfa.structural.RunAndWriteOutPFA

Current performance

 $e^+e^- \rightarrow Z(\nu\nu) Z(qq) @ 500 \text{ GeV for sid01 (q=uds), |cos9|<0.8}$

For comparison: 4.61 GeV in March (with old calibration) 4.87 GeV at January SLAC workshop 5.46 GeV at October FNAL workshop (NonTrivialPFA)

7

Algorithm in detail

Track extrapolation

- Not using real tracking -- but trying to keep things realistic.
- Start with Ron's FSReconTracks list of tracks which are reconstructible
 - Find position of 3 outermost truth hits in tracker
 - Extrapolate to calorimeter as a helix
 - Look for matching cluster (next slides) in ECAL -- preferably a MIP
- This works pretty well most of the time, but can go wrong for:
 - Low-momentum tracks
 - Loopers
 - Material interactions / decays in flight near ECAL
- ... but then, those cases are hard for real tracking too.
- Make a note of any unmatched tracks for later.

Finding photons

- Use Ron's updated photon finder -- efficiency & purity around 90%
- Check if there is a track directly connected to the photon
 - If no track match, treat as pure photon and NEVER assign hits to a charged shower.
 - If track match and cluster E = track p, treat as electron
 - If track match and cluster $E \neq$ track p, split up photon into pieces (see next slide)
 - Aim to handle case of nearby/overlapping photon & track
 - Piece directly connected to tracks is treated as charged
 - Fuzzy clustering for tiny pieces (<4 hits)
 - Rest is treated as photon

Photon splitting algorithm

ii) ECAL/HCAL Clustering

- ★ Start at inner layers and work outward
- ★ Tracks can be used to "seed" clusters
- **★** Associate hits with existing Clusters
- ★ If no association made form new Cluster
- ★ Simple cone based algorithm

I use a ~ 90° cone and allow it to skip one layer.

Neighbours of seed in same layer also picked up.

Idea taken from Mark Thomson, but implemented separately in org.lcsim

Structure in DTrees

• Apply DTree clusterer to remaining (non-photon) hits

 Goal here is to find "envelopes" for showers so that fuzzy/halo hits get assigned back to their parent properly

• Inside each DTree cluster, look for structure:

- Clumps with internal structure:
 - MIPs & MIP-like segments (projective & non-projective) [see next slide]
 - Clumps (high local hit density)
 - Other hits (share with nearby pieces in same DTree)
- Large clumps without internal structure treated as blocks (>= 20 hits in ECAL, >= 15 hits in HCAL)
- Smaller clumps shared with nearby clusters (fuzzy)

Finding MIPs (I)

org.lcsim.recon.cluster.mipfinder.TrackClusterDriver

• Primary MIP finder is very simple:

- Use only isolated or semi-isolated (∂) hits
- Look for neighbouring hits in sequential layers
- ... but because "neighbouring" is defined in a projective way, that can fail for non-projective or curved tracks.

Track

"Neighbours" in next layer

Finding MIPs (2)

org.lcsim.recon.cluster.mipfinder.NonProjectiveMipFinder

- Work-around: Second pass with a different MIP-finder
- Taking (semi-)isolated hits, find 3-hit stubs in sequential layers
- Expand outwards from both ends of stub
 - Linear extrapolation based on outermost hits
 - Cuts on direction, distance to next hit
 - Allowed to skip a layer from time to time
- Lots of fiddly code to merge/pair stubs & resolve ambiguities
- Only run it within a DTree cluster -- combinatorics are too awful to run it on an entire event

Notes on scoring

- For any given pair of clusters, can define a score between 0 and I to describe how likely they are to be connected
- MIP-MIP and MIP-clump links use likelihood computed with geometrical quantities like proximity, DOCA, etc.
 - Penalty if not both inside same DTree cluster
- MIP links to other things (larger clusters treated as blocks, seed photons, seed small clusters) based on proximity and pointing
- Clump-clump, clump-smallSeed, block-block, block-smallSeed links based on proximity & opening angle
- Some link types not included (e.g. photon seed to block)
- Scoring algorithms & constants based mostly on my judgement -- may not be fully optimal.

Building charged showers (1)

- Basic idea: build shower up from seed following simple rules:
 - Start with lowest-momentum tracks and work up
 - Don't take any clusters already assigned to a lower-momentum track =
 - Pick up highest-rated links first as long as they have score > threshold
 - If picking up a cluster x by following a link with score s_x , also pick up any unassigned clusters connected to x with score >= $s_x \rightarrow$
 - Stop when no more links available with
 - score > threshold
 - $E_{clus} < \sqrt{(p^2+m^2)}$ + tolerance after following link
 - Add more clusters if possible (see slide after next)
- If shower incomplete (E << p), loosen threshold/tolerance and iterate.

Illustrations

 Don't take any clusters already assigned to a lower-momentum track

 If picking up a cluster x by following a link with score s_x, also pick up any unassigned clusters connected to x with score >= s_x

Building charged showers (2)

 At the end of each iteration (i.e. after building showers for all tracks), search for this case:

- Cluster C isn't attached to any shower
- C is not a photon
- The best potential link for cluster C was to a track T
- E/p for track T wouldn't be too high if C was added to its shower
- \bullet ... then add C to the shower of track T
- This helps a LOT
 - In cases where showers are close by / overlapping and the code gets paralyzed with indecision, this helps it break the deadlock
 - ... but sometimes introduces mistakes.

Building charged showers (3)

- When done building shower, look at E/p for overall veto
- E >> p is rare (by construction)
- E << p more common -- veto to prevent double-counting (allow $\pm 2.5\sigma$)
- Exception: punch-through tracks (hits in last layers of HCAL) are allowed to under-shoot

Building charged showers (4)

- Sometimes 2+ charged showers are hopelessly entangled...
 ... or one shower steals a critical piece of another
- In that case, treat them as a single "jet" and look at $\Sigma E/\Sigma p$
- Not optimal use of information, but better than failing altogether
- Careful about using punchthrough showers in jets -- easy to lose information.

Neutral hadron showers

- Any substantial clusters not used in a charged shower are assumed to be from neutral hadron
- Build NH showers same way as charged showers, except with no E/p cut and score threshold fixed

Putting the output together

Make ReconstructedParticle objects:

- Photons: 4-vector based on cluster position & calorimeter energy
- Charged showers passing E/p veto and tracks that don't reach the calorimeter (low-p_T): 4-vector [etc] based on track momentum (assuming pion mass)
- Charged showers failing E/p veto: 4-vector based on cluster position and calorimeter energy
- Neutral hadron showers: 4-vector based on cluster position and calorimeter energy

Confusion matrix

 Output from Ron's diagnostic routines shows where all of the energy is going:

ZZ	Truth: photon	Truth: tracked particle	Truth: neutral hadron	Sum
Reco: photon	108,368	5,979	4,247	118,594 Purity: 91.4%
Reco: tracked particle	8,679	227,475	15,539	251,693 Purity: 90.4%
Reco: neutral hadron	6,905	22,673	42,666	72,244 Purity: 59.1%
Unused	I,037	9,177	2,214	12,428
Sum	I 24,989 Effic: 86.7%	265,304 Effic: 85.7%	64,666 Effic: 66.0%	

Diagonal elements: correct ID

Off-diagonal elements: mis-identified energy Charged-neutral confusion especially bad...

Next steps

• Improve algorithm itself:

- Study outlier events which are badly wrong
- Systematic bias for different classes of event?
- Scoring: More formal optimization of PFA constants? Make more use of likelihood selector tools? Add variables?

• Improve use of output:

- Look for π^0 , η ?
- Look at other designs:
 - So far, only tuned for sid01
 - Quick look at sid01_scint => will need to retune for scint HCAL
 - Work with MIT group to scan

People

- I am moving to a new job in 4Q08 -- won't be on ILC after.
- Replacement postdoc lined up to join U. Iowa group & overlap with me for few months. (Nominally part-time on ILC, but will be full-time at the start.)
- MIT group working on scan of parameter space
- A lot of the pieces are produced by other people, e.g.
 - DigiSim (Guilherme)
 - Photon-finding & ID (Ron+Qingmin)
 - Calibration (Ron)
 - Track list (currently using Ron's)
 - DTree clusterer (Guilherme et al)
 - etc

(modular approach has made life so much easier...)