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Talk overview

•Executive summary

• The goalposts

• Algorithm overview

• Getting & running the PFA

• Performance snapshot

•More detailed walk-through of algorithm

•Next steps & a note on manpower
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Goals (1)

• In a nutshell, we want a PFA that:

• is realistic

• has good enough performance to do the physics

• can help us make technology choices

•As rough figure of merit, use dijet mass residuals for
e+e− → Z(νν) Z(qq) @ 500 GeV for sid01 (q=uds), |cosϑ|<0.8

• Proposed in previous workshops as OK for physics:
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dM/M ~ 3% – 4%

i.e. dM ≤ 3.6 GeV or so



Goals (2)

•What is achievable?
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Perfect pattern recognition (PPR):  2.35 GeV

And track matched to cluster: 2.54 GeV

And passes E/p veto: 3.41 GeV

DTree clustering: 2.8 GeV

And track matched to cluster: ??? GeV

And passes E/p veto: ??? GeV
Guesstimate: about 3.5-3.9 GeV

Right now, goal is to push resolution down to ~ 4.0 GeV.
(Once we’re there, can think about going further...)



Algorithm overview

•Find photons. Set to one side.

• Run DTreeClusterer on remaining hits

•Within each DTreeCluster, look for substructure

• MIP segments, clumps, etc

• Define score to link them based on geometric quantities

• Fuzzy clustering for individual / small-cluster / halo hits

• Extrapolate tracks to calorimeter, match to “seed” clusters

• Build charged showers outwards from seeds

• Use links based on score, E/p (complicated -- more detail later!)

• Optionally, apply hard E/p veto after final clustering

• Build neutral hadron showers from remaining clusters
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Getting & running the PFA

•Get up-to-date CVS checkout & build

•Minimal code
(see example at org.lcsim.pfa.structural.RunAndWriteOutPFA)

add(new NonTrivialPFA());

add(new SetUpDTreeForReclustering());

add(new ReclusterDTreeDriver("DTreeClusters", 
"FSReconTracks", "ReconFSParticles"));

•Output lists:

• DTreeReclusteredParticles

• DTreeReclusteredParticles_withEoverPveto

• DTreeReclusteredParticles_forConfusionMatrix

•Additional code to flush & write out needed

• Again, see org.lcsim.pfa.structural.RunAndWriteOutPFA
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the one you want



Current performance
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For comparison:



Algorithm in detail
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Track extrapolation
•Not using real tracking -- but trying to keep things realistic.

• Start with Ron’s FSReconTracks list of tracks which are 
reconstructible

• Find position of 3 outermost truth hits in tracker

• Extrapolate to calorimeter as a helix

• Look for matching cluster (next slides) in ECAL -- preferably a MIP

• This works pretty well most of the time, but can go wrong for:

• Low-momentum tracks

• Loopers

• Material interactions / decays in flight near ECAL

• ... but then, those cases are hard for real tracking too.

•Make a note of any unmatched tracks for later.
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Finding photons

•Use Ron’s updated photon finder -- efficiency & purity 
around 90%

•Check if there is a track directly connected to the photon

• If no track match, treat as pure photon and NEVER assign hits to a 
charged shower.

• If track match and cluster E = track p, treat as electron

• If track match and cluster E ≠ track p, split up photon into pieces (see 
next slide)

• Aim to handle case of nearby/overlapping photon & track

• Piece directly connected to tracks is treated as charged

• Fuzzy clustering for tiny pieces (<4 hits)

• Rest is treated as photon
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Photon splitting algorithm
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Structure in DTrees

•Apply DTree clusterer to remaining (non-photon) hits

• Goal here is to find “envelopes” for showers so that fuzzy/halo hits 
get assigned back to their parent properly

• Inside each DTree cluster, look for structure:

• Clumps with internal structure:
• MIPs & MIP-like segments (projective & non-projective)

• Clumps (high local hit density)

• Other hits (share with nearby pieces in same DTree)

• Large clumps without internal structure treated as blocks
(>= 20 hits in ECAL, >= 15 hits in HCAL)

• Smaller clumps shared with nearby clusters (fuzzy)
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Finding MIPs (1)

•Primary MIP finder is very simple:

• Use only isolated or semi-isolated (∂) hits

• Look for neighbouring hits in sequential layers

• ... but because “neighbouring” is defined in a projective way, 
that can fail for non-projective or curved tracks.
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IP Track

“Neighbours” in next layer

org.lcsim.recon.cluster.mipfinder.TrackClusterDriver



Finding MIPs (2)

•Work-around: Second pass with a different MIP-finder

•Taking (semi-)isolated hits, find 3-hit stubs in sequential layers

• Expand outwards from both ends of stub

• Linear extrapolation based on outermost hits

• Cuts on direction, distance to next hit

• Allowed to skip a layer from time to time

• Lots of fiddly code to merge/pair stubs & resolve ambiguities

•Only run it within a DTree cluster -- combinatorics are too 
awful to run it on an entire event
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org.lcsim.recon.cluster.mipfinder.NonProjectiveMipFinder



Notes on scoring
•For any given pair of clusters, can define a score between 0 

and 1 to describe how likely they are to be connected

•MIP-MIP and MIP-clump links use likelihood computed with 
geometrical quantities like proximity, DOCA, etc.

• Penalty if not both inside same DTree cluster

•MIP links to other things (larger clusters treated as blocks, 
seed photons, seed small clusters) based on proximity and 
pointing

•Clump-clump, clump-smallSeed, block-block, block-smallSeed 
links based on proximity & opening angle

• Some link types not included (e.g. photon seed to block)

• Scoring algorithms & constants based mostly on my 
judgement -- may not be fully optimal. 15



Building charged showers (1)

•Basic idea: build shower up from seed following simple rules:

• Start with lowest-momentum tracks and work up

• Don’t take any clusters already assigned to a lower-momentum track ➡

• Pick up highest-rated links first as long as they have score > threshold

• If picking up a cluster x by following a link with score sx, also pick up any 
unassigned clusters connected to x with score >= sx ➡

• Stop when no more links available with

• score > threshold

• Eclus < √(p2+m2) + tolerance after following link

• Add more clusters if possible (see slide after next)

• If shower incomplete (E << p), loosen threshold/tolerance and 
iterate.
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Illustrations
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1 GeV track

20 GeV neutral hadron 
with secondary charged

Even if initial link looks 
good, don’t make it unless 
you can accept the things 

connected to it.
• If picking up a cluster x by 

following a link with score sx, also 
pick up any unassigned clusters 
connected to x with score >= sx

• Don’t take any clusters already 
assigned to a lower-momentum 
track

2 GeV track 25 GeV track



Building charged showers (2)

•At the end of each iteration (i.e. after building showers for all 
tracks), search for this case:

• Cluster C isn’t attached to any shower

• C is not a photon

• The best potential link for cluster C was to a track T

• E/p for track T wouldn’t be too high if C was added to its shower

• ... then add C to the shower of track T

• This helps a LOT

• In cases where showers are close by / overlapping and the code gets 
paralyzed with indecision, this helps it break the deadlock

• ... but sometimes introduces mistakes.
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Building charged showers (3)

•When done building shower, look at E/p for overall veto

• E >> p is rare (by construction)

• E << p more common -- veto to prevent double-counting 
(allow ±2.5σ)

• Exception: punch-through tracks (hits in last layers of HCAL) 
are allowed to under-shoot

19



Building charged showers (4)

• Sometimes 2+ charged showers 
are hopelessly entangled...
... or one shower steals a critical 
piece of another

• In that case, treat them as a 
single “jet” and look at ΣE/Σp

•Not optimal use of information, 
but better than failing altogether

•Careful about using punch-
through showers in jets -- easy 
to lose information.
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15 GeV track

25 GeV track

Tracker Calorimeter

0.5 GeV 
MIP cluster

0.6 GeV 
MIP cluster

40 GeV clump

10 GeV track

60 GeV track

0.5 GeV 
MIP cluster

1 GeV MIP 
cluster

1 GeV MIP 
cluster

punch 
through

0.5 GeV MIP cluster

8 GeV clump

Second yellow MIP gets stolen by blue shower



Neutral hadron showers

•Any substantial clusters not used in a charged shower are 
assumed to be from neutral hadron

• Build NH showers same way as charged showers, except 
with no E/p cut and score threshold fixed
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Putting the output together

•Make ReconstructedParticle objects:

• Photons: 4-vector based on cluster position & calorimeter energy

• Charged showers passing E/p veto and tracks that don’t reach the 
calorimeter (low-pT): 4-vector [etc] based on track momentum 
(assuming pion mass)

• Charged showers failing E/p veto: 4-vector based on cluster position 
and calorimeter energy

• Neutral hadron showers: 4-vector based on cluster position and 
calorimeter energy
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Confusion matrix
•Output from Ron’s diagnostic routines shows where all of 

the energy is going:
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ZZ Truth: photon
Truth: tracked 

particle
Truth: neutral 

hadron
Sum

Reco: photon 108,368 5,979 4,247
118,594

Purity: 91.4%

Reco: tracked 
particle

8,679 227,475 15,539
251,693

Purity: 90.4%

Reco: neutral 
hadron

6,905 22,673 42,666
72,244

Purity: 59.1%

Unused 1,037 9,177 2,214 12,428

Sum
124,989

Effic: 86.7%
265,304

Effic: 85.7%
64,666

Effic: 66.0%

Diagonal elements: correct ID
Off-diagonal elements: mis-identified energy
Charged-neutral confusion especially bad...



Next steps

• Improve algorithm itself:

• Study outlier events which are badly wrong

• Systematic bias for different classes of event?

• Scoring: More formal optimization of PFA constants? Make more use 
of likelihood selector tools? Add variables?

• Improve use of output:

• Look for π0, η?

• Look at other designs:

• So far, only tuned for sid01

• Quick look at sid01_scint => will need to retune for scint HCAL

• Work with MIT group to scan 
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People
• I am moving to a new job in 4Q08 -- won’t be on ILC after.

• Replacement postdoc lined up to join U. Iowa group & 
overlap with me for few months. (Nominally part-time on 
ILC, but will be full-time at the start.)

•MIT group working on scan of parameter space

•A lot of the pieces are produced by other people, e.g.

• DigiSim (Guilherme)

• Photon-finding & ID (Ron+Qingmin)

• Calibration (Ron)

• Track list (currently using Ron’s)

• DTree clusterer (Guilherme et al)

• etc

(modular approach has made life so much easier...) 25


