Muon Colliders

Neutrino Factor Muon Collidet

R. B. Palmer (BNL)

School

Chicago Oct 27 2008

Contents

DEFINITIONS AND UNIT CONVENTIONS 2
 WHY CONSIDER A MUON COLLIDER 7
 CURRENT BASELINE DESIGNS 18
 SOLENOID FOCUSING 34
 TRANSVERSE IONIZATION COOLING 39
 LONGITUDINAL IONIZATION COOLING 50

1 DEFINITIONS AND UNIT CONVENTIONS

Units

When discussing the motion of particles in magnetic fields, I will use MKS units, but this means that momentum, energy, and mass are in Joules and kilograms, rather than in the familiar 'electron Volts'. To make the conversion easy, I will introduce these quantities in the forms: [pc/e], [E/e], and $[mc^2/e]$, respectively. Each of these expressions are then in units of straight Volts corresponding to the values of p, E and m expressed in electron Volts. For instance, I will write, for the bending radius in a field B:

$$\rho = \frac{[pc/e]}{B c}$$

meaning that the radius for a 3 GeV/c particle in 5 Tesla is

$$\rho = \frac{3 \ 10^9}{5 \ \times \ 3 \ 10^8} = 2m$$

Emittance

$$\epsilon_n = \text{normalized emittance} = \frac{\text{Phase Space Area}}{\pi \text{ m c}}$$

The phase space can be transverse: p_x vs x, p_y vs y, or longitudinal Δp_z vs z, where Δp_z and z are with respect to the moving bunch center.

If x and p_x are both Gaussian and uncorrelated, then the area is that of an upright ellipse, and:

$$\epsilon_{\perp} = \frac{\pi \ \sigma_{p_{\perp}} \sigma_x}{\pi \ mc} = (\gamma \beta_v) \sigma_{\theta} \sigma_x \qquad (\pi \ m \ rad) \tag{1}$$

$$\epsilon_{\parallel} = \frac{\pi \ \sigma_{p_{\parallel}} \sigma_z}{\pi \ mc} = (\gamma \beta_v) \frac{\sigma_p}{p} \ \sigma_z \qquad (\pi \ m \ rad) \tag{2}$$

$$\epsilon_6 = \epsilon_\perp^2 \quad \epsilon_\parallel \qquad (\pi \ m)^3 \tag{3}$$

The subscript v on β_v indicates that $\beta_v = v/c$. The π , added to the dimension, is a reminder that the emittance is phase space/ π . Un-normalize emittances $\epsilon = \sigma_{\theta}\sigma_x$ (without the $\beta_v\gamma$), are often used, but whenever I use an emittance, it is always assumed to be "normalized". Emittances are also sometimes quoted defining ellipses with 95% of Gaussian beams.

$$\epsilon_{95\%} \approx 6 \times \epsilon_{rms}$$

β_{\perp} of Beam

For an upright phase ellipse in x' vs x,

$$\beta_{\perp} = \left(\frac{\text{width}}{\text{height}} \quad \text{of phase ellipse}\right) = \frac{\sigma_x}{\sigma_{\theta}}$$
(4)

Then, using the emittance definition:

$$\sigma_x = \sqrt{\epsilon_\perp \beta_\perp \frac{1}{\beta_v \gamma}} \tag{5}$$

$$\sigma_{\theta} = \sqrt{\frac{\epsilon_{\perp}}{\beta_{\perp}} \frac{1}{\beta_{v} \gamma}} \tag{6}$$

 $\beta_{lattice}$ can also be defined for a repeating lattice, where it is that β_{beam} that is matched to the lattice. Equation 5, but not eq. 6 are valid even when the ellipse is tilted.

 β_{\perp} (or β^*) beam at focus

 β^* is like a depth of focus

As $z \to \infty$

$$\sigma_x \to \frac{\sigma_o \ z}{\beta^*}$$

giving an angular spread of

$$\theta = \frac{\sigma_o}{\beta^*}$$

as above in eq.4

β_{\perp} of a Lattice

 β_{\perp} above was defined by the beam, but a lattice can have a β_o that may or may not "match" the β_{\perp} of the beam.

e,g. if a continuous inward focusing force, then there is a PERIODIC solution:

$$\frac{d^2u}{dz^2} = -k \ u \qquad u = A \ \sin\left(\frac{z}{\beta_o}\right) \qquad u' = \frac{A}{\beta_o} \ \cos\left(\frac{z}{\beta_o}\right)$$

where $\beta_o = 1/\sqrt{k}$ $\lambda = 2\pi \beta_o$

In the u' vs. u plane, this motion is also an ellipse with

$$\frac{\text{width}}{\text{height}}$$
 of elliptical motion in phase space $=\frac{\hat{u}}{\hat{u'}} = \beta_o$

If we have many particles with $\beta_{\perp}(\text{beam}) = \beta_o(\text{lattice})$ then all particles move arround the ellipse, the shape, and thus $\beta_{\perp}(\text{beam})$ remains constant, and the beam is "matched" to this lattice.

If the beam's $\beta_{\perp}(\text{beam}) \neq \beta_o$ of the lattice then $\beta_{\perp}(\text{beam of the beam oscillates about } \beta_o(\text{lattice})$: often refered to as a "beta beat".

2 WHY CONSIDER A MUON COLLIDER

Why are leptons (e.g. e or μ) 'better' than protons

- Protons are made of many pieces (quarks and gluons)
- Each carries only a fraction of th proton energy
- Fundamental interactions occur only between these individual pieces
- ullet And the interaction energies are only fractions (pprox 1/10) of the proton energies
- Leptons (e's and μ 's) are point like
- Their interaction energies are their whole energies

E(3 TeV e^+e^- CLIC or $\mu^+\mu^-$) \equiv 2 × E(14 TeV $p\bar{p}$ LHC)

• In addition the energy and quantum state is known for $e^+e^- {\rm or}~\mu^+\mu^-$ but unknown for the parton-parton interaction with protons

S-Channel advantage of muons over electrons

- \bullet When all the collision energy \rightarrow a single state, it is called the "S-Channel"
- A particularly interesting S-Channel interaction would be

$$e^+e^- \rightarrow Higgs \qquad or \qquad \mu^+\mu^- \rightarrow Higgs$$

The cross sections σ for these interactions

$$\sigma \propto m^2$$

SO

$$\sigma(e^+e^- \rightarrow H) \approx 40,000 \times \sigma(\mu^+\mu^- \rightarrow H)$$

Muons generate less 'Beamstrahlung'

- When high energy electrons in one bunch pass through the other bunch they see the EM fields of the other moving bunch
- These fields are enough to generate synchrotron radiation (called beamstahlung)
- So the energy of the collision is not so well known $\sigma_E \approx 30\%$ (at 3 TeV e^+e^- CLIC)
- And the luminosity at the requires energyy is less ${\cal L}~pprox 1/3$ (for $E\pm$ 1% at 3 TeV CLIC)
- But for muons the synchrotron radiation ($\propto 1/m^3$) is negligible
- This could be a particular advantage for $\mu^+\mu^- \rightarrow H$ because with a narrow enough σ_E one could measure the width of a narrow Higgs

Why are Linear colliders linear?

- Earlier electon positron colliders (LEP), like proton colliders, were rings
- But proposed high energy electron colliders are linear
 WHY
- Synchrotron radiation of particles bent in the ring magnetic field

$$\Delta E(\text{per turn}) = \left(\frac{4\pi \ mc^2}{3}\right) \left(\frac{r_o}{\rho}\right) \beta_v^3 \gamma^4 \quad \approx \propto \quad B \ \gamma^3$$

- For electons (m \approx 0.5 MeV) this becomes untenable for E >> 0.1 TeV
- Above this (LEP's) energy, electron colliders must be linear
- But for muons (m \approx 100 MeV) rings are ok up to around 20 TeV equivaalent to a proton collider of 200 TeV

The advantages of rings

- Muon go round a ring many times
 - Muons live 2 μ seconds at the speed of light that is only 150 m But

 $\tau_{\rm lab\ frame} = \tau_{\rm rest\ frame} \times \gamma$

- For a 1 TeV muon: $\gamma \approx 10,000$ $\tau \approx 20$ msec they go 1500 km - For < B >=10 T, a 1 TeV ring will have a circumference of

$$C = \frac{2\pi \ [pc/e]}{c \ B} = \frac{2\pi \ 10^{12}}{3 \ 10^8 \ 10} = 2 \text{ km}$$

so they will go round , on average, 1500/2 = 700 times

- For the same luminosity, the spot is 700 times larger than in a linear collider \rightarrow easier tolerances
- There can be 2 or more Detectors giving an even larger total luminosity gain
- Acceleraqtion must also be fast, in a number of turns << 700 still much easier than in the single pass required for e^+e^-

So they are much smaller

ILC
$$e^+e^-$$
(.5 TeV)

CLIC e^+e^- (3TeV)

And hopefully cheaper

Why NOT a $\mu^+\mu^-$ collider

- Make muons from the decay of pions
- With pions made from protons on a target
- To avoid excessive proton power, we must capture a large fraction of pions made
 - Use a high field solenoid
 Captures most transverse momenta
 - Use Phase rotation
 Captures most longitudinal moments
- The phase space of the pions is now very large:
 - $-\,\mathrm{a}$ transverse emittance of 20 pi mm and
 - $-\,a$ longitudinal emittance of 2 pi m
- These emittances must be somehow be cooled by
 - $-\approx$ 1000 in each transverse direction and
 - -40 in longitudinal direction
- A factor of over 10^7 !

Cooling Methods

- Electrons are typically cooled (damped) by synchrotron radiation but muons radiate too little ($\Delta E \propto 1/m^3$)
- Protons are typically cooled by a comoving cold electron beam too slow
- Or by stochastic methods too slow and only works for low intensities ($au \propto 1/\sqrt{N}$)
- Ionization cooling is probably the only hope
- Although optical stochastic cooling after ionization cooling might be useful for very high energies

Luminosity Dependence

$$\mathcal{L} = n_{\text{turns}} f_{\text{bunch}} \frac{N_{\mu}^2}{4\pi \sigma_{\perp}^2} \qquad \Delta \nu \propto \frac{N_{\mu}}{\epsilon_{\perp}}$$
$$\mathcal{L} \propto B_{\text{ring}} P_{\text{beam}} \Delta \nu \frac{1}{\beta^*}$$

• Higher \mathcal{L}/P_{beam} requires lower β^* or correction of $\Delta \nu$

- Lower emittances do not directly improve Luminosity/Power
- \bullet But for fixed $\Delta\nu$, ϵ_{\perp} must be pretty small to avoid N_{μ} becoming unreasonable

For the next page:

$$\mathcal{L} \propto \langle B_{
m ring} \rangle \ I_{
m beam} \ \gamma \ \frac{\Delta \nu}{\beta^*}$$
 $I_{\mu} \propto rac{\mathcal{L} \ \beta^*}{\langle \mathrm{B} \rangle \ \gamma \ \Delta
u}$

Neutrino Radiation Constraint

For D=135 m R=40 Km for 4 TeV example For D=540 m R=80 Km for 8 TeV example OK up to 8 TeV, but a problem higher

Conclusions on 'Why a muon collider"

- Point like interactions as in linear $e^+e^$ effective energy 10 times hadron machines
- Negligible synchrotron radiation:
 - $-\operatorname{Acceleration}$ in rings
 - $-\operatorname{Small}$ footprint
 - $\, {\rm Less} \,\, {\rm rf}$
 - Hopefully cheaper
- \bullet Collider is a Ring pprox 2000 crossings per bunch
 - Larger spot
 - Easier tolerances
 - $-\,2$ or more Detectors
- Negligible Beamstrahlung Narrow energy spread
- 40,000 greater S channel Higgs Enabling study of widths
- \bullet But serious challenge to cool the muons by $\gg~10^7$ times
- Neutrino radiation a significant problem at very high energies
- CLIC better understood, but may not be affordable

3 CURRENT BASELINE DESIGNS

Parameters

C of m Energy	1.5	4	TeV
Luminosity	1	4	$10^{34} \text{ cm}^2 \text{sec}^{-1}$
Muons/bunch	2	2	10^{12}
Ring circumference	3	8.1	km
eta^* at $IP=\sigma_z$	10	3	mm
rms momentum spread	0.1	0.12	%
Required depth for ν rad	13	135	m
Repetition Rate	12	6	Hz
Proton Driver power	\approx 4	pprox 1.8	MW
Muon Trans Emittance	25	25	pi mm mrad
Muon Long Emittance	72,000	72,000	pi mm mrad

- Based on real Collider Ring designs, though both have problems
- Emittance and bunch intensity requirement same for both examples
- 4 TeV luminosity comparable to CLIC's
- \bullet Depth for ν radiation keeps off site dose $<1~{\rm mrem/year}$

Emittances vs. Stage

- Every stage simulated at some level,
- But with many caveats

Estimated losses vs 6D emittance

- Only 7% survive
- And even this estimate did not fully include matching losses
- This means that the initial pion, and thus proton, bunches must be intense
- Much more intense than IDS specification for a Neutrino Factory

Proton driver

- Project X (8 GeV H⁻ linac),
- Together with accumulation in the Re-cycler
- And acceleration to 56 GeV in the Main Injector
- \bullet Could provide the required 12 Hz protons with power = 4 MW
- This driver could meet Factory requirement, but the reverse need not be true

6D Cooling Several methods under study a) "Guggenheim" Lattice (baseline)

- Lattice arranged as 'Guggenheim' upward helix
- Bending gives dispersion
- Higher momenta pass through longer paths in wedge absorbers giving momentum cooling (emittance exchange)
- \bullet Starting at 201 MHz and 3 T, ending at 805 MHz and 10 T
- Snake is similar but with alternating bends

e.g. 805 MHz 10 T cooling to 400 mm mrad

b) Helical Cooling Channel (HCC)

- Muons move in helical paths in high pressure hydrogen gas
- Higher momentum tracks have longer trajectories giving momentum cooling (emittance exchange)

- Initial Bz=4.3 T
- Final Bz=13.6 T
- But final *ϵ*⊥=900 mm mrad c.f. 400 mm mrad in baseline scheme

Engineering integration of rf not well defined Possible problem of rf breakdown with intense muon beam transit

Final Transverse Cooling in High Field Solenoids

• Lower momenta allow transverse cooling to required low transverse emittance, but long emittance rises: Effectively reverse emittance exchange

- Need five 50 T solenoids
- ICOOL Simulation of cooling in solenoids
- Simulation of re-acceleration/matching started
- 45/50 T Solenoids ?
 - $-\,45$ T hybrid at NHMFL, but uses 25W
 - $-\operatorname{Could}$ achieve 50T with 37 MW
 - $-\,30$ T all HTS designed at NHMFL

NHMFL 45 T Hybrid Magnet

Acceleration

- Sufficiently rapid acceleration is straightforward in Linacs and Recirculating linear accelerators (RLAs) Using ILC-like 1.3 GHz rf
- Lower cost solution would use Pulsed Synchrotrons
- Pulsed synchrotron 30 to 400 GeV (in Tevatron tunnel)
- Hybrid SC & pulsed magnet synchrotron 400-900 GeV (in Tevatron tunnel)

Collider Ring

• 1.5 TeV (c of m) Design

- Nearly meets requirements
- $-\operatorname{But}$ early dipole may deflect unacceptable background into detector
- 4 TeV (c of m) 1996 design by Oide
 - $-\operatorname{Meets}$ requirements in ideal simulation
 - $-\operatorname{But}$ is too sensitive to errors to be realistic
- The experts believe that the required rings should be possible

Detector From 1996 Study of 4 TeV Collider

- Sophisticated shielding designed in 1996 4 TeV Study
- GEANT simulations then indicated acceptable backgrounds
- Would be less of a problem now with finer pixel detectors BUT
- Tungsten shielding takes up 20 degree cone

Quad

Layout of 4 TeV Collider using pulsed synchrotrons

Technical challenge: rf breakdown in magnetic fields

"Dark Current" electrons accelerated and focused by magnetic field
 Melt small spots causing breakdown

Solution ? Gas filled cavities show no such effect

- But a beam passing through may cause breakdown or rapid loss of rf (e.g. Q=2)
- Also not suitable at lower betas since hydrogen will cause Coulomb scattering

Alternative: Magnetic Insulation

- All tracks return to the surface & Energies very low
- No dark current, No X-Rays, no danger of melting surfaces

 Adding second coil improves rf cavity efficiency

Conclusion on Baseline design

- All stages for a "baseline" design have been simulated at some level
- Matching and tapering of 6D cooling remains to be designed
- Matching and re acceleration in the final 50 T transverse cooling is under study
- Collider ring designs exist for both 1.5 TeV and 4 TeV colliders although both still have problems
- Detector design and shielding has been studied and looks OK

4 SOLENOID FOCUSING

Motion in Long Solenoid

Consider motion in a fixed axial filed B_z , starting on the axis O with finate transverse momentum p_{\perp} i.e. with initial angular momentum=0.

y

$$\rho = \frac{[pc/e]_{\perp}}{c B_z}$$

$$x = \rho \sin(\psi)$$

$$= \rho (1 - \cos(\psi))$$

$$\frac{dz}{d\psi} = \rho \frac{p_z}{p_{\perp}}$$
(7)

For $\psi < 180^{\circ}$ $\phi < 90^{\circ}$:

$$r = 2\rho \sin\left(\frac{\psi}{2}\right) = 2\rho \sin(\phi)$$
$$\frac{dz}{d\phi} = 2\rho \frac{p_z}{p_\perp}$$

Larmor Plane

If The center of the solenoid magnet is at O, then consider a plane that contains this axis and the particle. This, for a particle with initally no angular momentum, is the 'Larmor Planey y

$$u = 2\rho \sin(\phi)$$

$$\lambda_{\text{Helix}} = 2\pi \frac{dz}{d\psi} = 2\pi \rho \frac{p_z}{p_\perp} = 2\pi \frac{[pc/e]_z}{c B_z}$$

$$\lambda_{\text{Larmor}} = 2\pi \frac{dz}{d\phi} = 2\pi 2\rho \frac{p_z}{p_\perp} = 4\pi \frac{[pc/e]_z}{c B_z}$$
(8)

The lattice parameter β_o is defined in the Larmor frame, so

$$\beta_o = \frac{\lambda_{Larmor}}{2\pi} = \frac{2 \left[pc/e \right]_z}{c B_z} \tag{9}$$

Focusing Force

In this constant B case, the observed sinusoidal motion in the u plane is generated by a restoring force towards the axis O.

The momentum p_O about the axis O (perpendicular to the Larmor plane), using eq.7 and eq.8:

$$[p_{O}c/e] = [p_{\perp}c/e] \sin(\phi) = cB_{z}\rho \frac{u}{2\rho} = \frac{cB_{z}}{2}u$$
(10)

And the inward bending as this momentum crosses the B_z field is

$$\frac{d^2u}{dz^2} = -\left(\frac{cB_z}{2\left[p_z c/e\right]}\right)^2 u \tag{11}$$

This inward force proportional to the distance u from the axis is an ideal focusing force

Note: the focusing "Force" $\propto B_z^2$ so it works the same for either sign, and $\propto 1/p_z^2$. Whereas in a quadrupole the force $\propto 1/p$ So solenoids are not good for high p, but beat quads at low p.

Entering a solenoid

$$\Delta [pc/e]_{\perp} = \int B_r \, dz = \frac{B_z \, r \, c}{2} \tag{12}$$

So for our case with zero initial transverse momentum,

$$[pc/e]_{\perp} = \int B_r \ dz = \frac{B_z \ r \ c}{2}$$

Which is the same as eq.10, and will lead to the same inward bending, as when the particle started inside the field.

In fact eq.11 is true no matter how the axial field varies

Conclusion on solenoid focusing

- ullet In a uniform solenoid field a particle moves in a helix of wavelength λ_{helix}
- But in the rotating larmor plane it oscillates with wavelength $\lambda_{\text{larmor}} = 2 \lambda_{\text{helix}}$
- Even with non uniform fields, motion in the larmor plane:
 - $-\operatorname{\mathsf{Focus}}$ is always towards the axis
 - $-\,{\rm With}$ a 'force' $\propto~B^2/p^2$
 - $-\operatorname{If}$ a particle starts in the Larmor plane, it stays in that plane
- Since a quadrupole focuses with a 'force' $\propto B/p$ instead of 'force' $\propto B^2/p^2$, the solenoid is always stronger at low enough momenta and Solenoids focus in both planes, whereas quadrupoles focus in one and defocus in the other

5 TRANSVERSE IONIZATION COOLING

If there is no Coulomb scattering, or other sources of emittance heating, then σ_{θ} and $\sigma_{x,y}$ are unchanged by energy loss, but p and thus $\beta\gamma$ are reduced. So the fractional cooling $d\epsilon / \epsilon$ is (using eq.??):

$$\frac{d\epsilon}{\epsilon} = \frac{dp}{p} = \frac{dE}{E} \frac{1}{\beta_v^2} \tag{13}$$

which, for a given energy change, strongly favors cooling at low energy.

Heating Terms

$$\epsilon_{x,y} \;=\; \gamma eta_v \; \sigma_ heta \; \sigma_{x,y}$$

Between scatters the drift conserves emittance (Liouiville). When there is scattering, $\sigma_{x,y}$ is conserved, but σ_{θ} is increased.

$$\Delta(\epsilon_{x,y})^2 = \gamma^2 \beta_v^2 \sigma_{x,y}^2 \Delta(\sigma_\theta^2)$$
$$2\epsilon \ \Delta\epsilon = \gamma^2 \beta_v^2 \left(\frac{\epsilon \beta_\perp}{\gamma \beta_v}\right) \ \Delta(\sigma_\theta^2)$$
$$\Delta\epsilon = \frac{\beta_\perp \gamma \beta_v}{2} \ \Delta(\sigma_\theta^2)$$

e.g. from Particle data booklet

$$\Delta(\sigma_{\theta}^2) \approx \left(\frac{14.1 \ 10^6}{[pc/e]\beta_v}\right)^2 \ \frac{\Delta s}{L_R}$$

$$\Delta \epsilon = \frac{\beta_{\perp}}{\gamma \beta_v^3} \Delta E \left(\left(\frac{14.1 \ 10^6}{2[mc^2/e]_{\mu}} \right)^2 \frac{1}{L_R dE/ds} \right)$$

Defining

$$C(mat, E) = \frac{1}{2} \left(\frac{14.1 \ 10^6}{[mc^2/e]_{\mu}} \right)^2 \frac{1}{L_R \ d\gamma/ds}$$
(14)

then
$$\frac{\Delta\epsilon}{\epsilon} = dE \frac{\beta_{\perp}}{\epsilon\gamma\beta_v^3} C(mat, E)$$
 (15)

Equilibrium emittance

Equating this with equation 13

$$dE \ \frac{1}{\beta_v^2 \ E} \ = \ dE \ \ \frac{\beta_\perp}{\epsilon \gamma \beta_v^3} \ \ C(mat,E)$$

gives the equilibrium emittance ϵ_{o} :

$$\epsilon_{x,y}(min) = \frac{\beta_{\perp}}{\beta_v} C(mat, E)$$
 (16)

At energies for minimum ionization loss:

As a function of energy:

material	Т	density	dE/dx	L_R	C_o	
	^o K	kg/m^3	MeV/m	m	10^{-4}	[₩] 75-
Liquid H_2	20	71	28.7	8.65	38	
Liquid He	4	125	24.2	7.55	51	U 50-
LiH	300	820	159	0.971	61	atar
Li	300	530	87.5	1.55	69	⁸ 25 Hydrogen
Be	300	1850	295	0.353	89	Ŭ
AI	300	2700	436	0.089	248	0^{1}
L	1					Kinetic Energy (M

Clearly Liquid Hydrogen is far the best material, but has cryogenic and safety complications, and requires windows which will significantly degrade the performance. At lower energies C is much lower but there is then longitudinal (dp/p) heating.

Rate of Cooling

$$\frac{d\epsilon}{\epsilon} = \left(1 - \frac{\epsilon_{\min}}{\epsilon}\right) \frac{dp}{p} \tag{17}$$

Beam Divergence Angles

$$\sigma_{ heta} \;=\; \sqrt{rac{\epsilon_{\perp}}{eta_{\perp}\;eta_{v}\gamma}}$$

so, from equation 16, for a beam in equilibrium

$$\sigma_{\theta} = \sqrt{\frac{C(mat, E)}{\beta_v^2 \gamma}}$$

and for 50 % of maximum cooling rate and an aperture at 3 σ , the angular aperture A of the system must be

$$\mathcal{A} = 3\sqrt{2} \sqrt{\frac{C(mat, E)}{\beta_v^2 \gamma}} \tag{18}$$

Apertures for hydrogen and lithium are plotted vs. energy below. These are very large angles, and if we limit apertures to less than 0.3, then this requirement sets lower energy limits of about 100 MeV (\approx 170 MeV/c) for Lithium, and about 25 MeV (\approx 75 MeV/c) for hydrogen.

 $\theta = 0.3$ may be about as large as is possible in a lattice, but larger angles may be sustainable in a continuous focusing system such as a lens or solenoid. is optimistic, as we will see in the tutorial.

Focusing as a function of the beam momentum

We see that at momenta where longitudinal emittance is not blown up (≈ 200 MeV/c) then even at 50 T the minimum emittance is $\approx 100 \ \mu m \implies$ >> required 25 μm

But if we allow longitudinal heating and use very low momenta (45-62 $\rm MeV/c$ or 9-17 $\rm MeV$) the muon collider requirements can be met

Decreasing beta in Solenoids by adding periodicity

Super FOFO Double periodicity

SFOFO Lattice Engineering Study 2 at Start of Cooling

- This is the lattice to be tested in Muon Ionization Cooling Experiment (MICE) at RAL
- In study 2 the lattice is modified vs. length to lower β_{\perp} as ϵ falls This keeps σ_{θ} and ϵ/ϵ_o more or less constant, thus maintains cooling rate

Performance

Conclusion on transverse cooling

- Hydrogen (gas or liquid) is the best material to use
- Cooling requires very large angular acceptances -
- Only realistically possible in solenoid focused systems
- \bullet Adding periodicity lowers the β_{\perp} for a given solenoid field
- But periodicity does reduce acceptance
- Final cooling to 25 μm possible at 50 T and low energies but longitudinal emittance then rises rapidly
- The biggest technical problem is rf breakdown in magnetic fields but solutions are being studied
- Cooling to lower emittances would allow lower N_{μ} for same $\Delta \nu$ easing space charge problems in proton driver and cooling

6 LONGITUDINAL IONIZATION COOLING

Following the convention for synchrotron cooling we define partition functions:

$$J_{x,y,z} = \frac{\frac{\Delta (\epsilon_{x,y,z})}{\epsilon_{x,y,z}}}{\frac{\Delta p}{p}}$$
(20)

$$J_6 = J_x + J_y + J_z \tag{21}$$

where the $\Delta \epsilon$'s are those induced directly by the energy loss mechanism (ionization energy loss in this case). Δp and p refer to the loss of momentum induced by this energy loss.

In electron synchrotrons, with no gradients fields, $J_x = J_y = 1$, and $J_z = 2$. In muon ionization cooling, $J_x = J_y = 1$, but J_z is negative or small.

c.f. Transverse

$$\frac{\Delta \sigma_{p\perp}}{\sigma_{p\perp}} = \frac{\Delta p}{p}$$

and $\sigma_{x,y}$ does not change, so

$$\frac{\Delta \epsilon_{x,y}}{\epsilon_{x,y}} = \frac{\Delta p}{p} \tag{22}$$

and thus

$$J_x = J_y = 1 \tag{23}$$

Longitudinal cooling/heating without wedges

The emittance in the longitudinal direction ϵ_z is (eq.2):

$$\epsilon_z = \gamma \beta_v \, \frac{\sigma_p}{p} \, \sigma_z = \frac{1}{m} \, \sigma_p \sigma_z = \frac{1}{m} \, \sigma_E \sigma_t = c \, \sigma_\gamma \, \sigma_t$$

where σ_t is the rms bunch length in time, and c is the velocity of light. Drifting between interactions will not change emittance (Louville), and an interaction will not change σ_t , so emittance change is only induced by the energy change in the interactions:

$$\frac{\Delta \epsilon_z}{\epsilon_z} = \frac{\Delta \sigma_\gamma}{\sigma_\gamma} = \frac{\sigma_\gamma \,\Delta s \,\frac{d(d\gamma/ds)}{d\gamma}}{\sigma_\gamma} = \Delta s \,\frac{d(d\gamma/ds)}{d\gamma}$$

and

$$\frac{\Delta p}{p} = \frac{\Delta \gamma}{\beta_v^2 \gamma} = \frac{\ell}{\beta_v^2 \gamma} \left(\frac{d\gamma}{ds}\right)$$

So from the definition of the partition function J_z :

$$J_{z} = \frac{\Delta \epsilon_{z}}{\frac{\Delta p}{p}} = \frac{\left(\Delta s \frac{d(\alpha \gamma/ds)}{d\gamma}\right)}{\frac{\Delta s}{\beta_{v}^{2}\gamma} \left(\frac{d\gamma}{ds}\right)} = \frac{\left(\beta_{v}^{2} \frac{d(\alpha \gamma/ds)}{d\gamma/\gamma}\right)}{\left(\frac{d\gamma}{ds}\right)}$$
(24)
energy loss as a sis shown above tis shown above the Lithium). It is by:
is strongly negative at trudinal heating), and is at momenta above 300 the there are many reasons the momentum around 250 ≈ 0 . However, the 6D g $J_{6} \approx 2$.

A typical relative e function of energy (this example is for given approximately

It is seen that J_z low energies (longi only barely positive MeV/c. In practice to cool at a moderat MeV/c, where J_z cooling is still strong

Emittance Exchange

What is needed is a method to exchange cooling between the transverse and longitudinal direction s. This is done in synchrotron cooling if focusing and bending is combined, but in this case, and in general, one can show that such mixing can only increase one J at the expense of the others: J_6 is conserved.

$$\Delta J_x + \Delta J_x + \Delta J_x = 0 \tag{25}$$

and for typical operating momenta:

$$J_x + J_y + J_z = J_6 \approx 2.0$$
 (26)

dp/p reduced But σ_y increased Long Emit reduced Trans Emit Increased

"Emittance Exchange"

With Wedges

Longitudinal cooling with wedges and Dispersion

For a wedge with center thickness ℓ and height from center h ($2h \tan(\theta/2) = \ell$), in dispersion $D \left(D = \frac{dy}{dp/p} : D = \beta_v^2 \frac{dy}{d\gamma/\gamma}\right)$ (see fig. above):

$$\frac{\Delta \epsilon_z}{\epsilon_z} = \frac{\Delta \sigma_\gamma}{\sigma_\gamma} = \frac{\sigma_\gamma \frac{ds}{d\gamma} \left(\frac{d\gamma}{ds}\right)}{\sigma_\gamma} = \frac{ds}{d\gamma} \left(\frac{d\gamma}{ds}\right) = \left(\frac{\ell}{h}\right) \frac{D}{\beta_v^2 \gamma} \left(\frac{d\gamma}{ds}\right)$$

and

$$\frac{\Delta p}{p} = \frac{\Delta \gamma}{\beta_v^2 \gamma} = \frac{\ell}{\beta_v^2 \gamma} \left(\frac{d\gamma}{ds}\right)$$

So from the definition of the partition function J_z :

$$\Delta J_z(\text{wedge}) = \frac{\frac{\Delta \epsilon_z}{\epsilon_z}}{\frac{\Delta p}{p}} = \frac{\left(\frac{\ell}{h}\right) \frac{D}{\beta_v^2 \gamma} \left(\frac{d\gamma}{ds}\right)}{\frac{\ell}{\beta_v^2 \gamma} \left(\frac{d\gamma}{ds}\right)} = \frac{D}{h} \quad \text{(for simple bend \& gas } \Delta J_z(\text{wedge}) = 1) \quad (27)$$

$$J_z = J_z(\text{no wedge}) + \Delta J_z(\text{wedge})$$
 (28)

Effect on transverse cooling

But from eq.25,

$$\Delta J_x + \Delta J_x + \Delta J_x = 0$$

for any finite J_z (wedge), J_x or J_y will change in the opposite direction.

And now we have to include $J_{x,y}$ in the formulae for rate of cooling and equilibria

$$\frac{d\epsilon_{x,y}}{\epsilon_{x,y}} = J_{x,y} \frac{dp}{p}$$
$$\epsilon_{x,y}(min) = \frac{\beta_{\perp}}{J_{x,y} \beta_{v}} C(mat, E)$$

Longitudinal Heating Terms

Since $\epsilon_z = \sigma_\gamma \sigma_t c$, and t and thus σ_t is conserved in an interaction

$$\frac{\Delta \epsilon_z}{\epsilon_z} = \frac{\Delta \sigma_\gamma}{\sigma_\gamma}$$

Straggling:

$$\Delta(\sigma_{\gamma}) \approx \frac{\Delta \sigma_{\gamma}^2}{2\sigma_{\gamma}} \approx \frac{1}{2\sigma_{\gamma}} 0.06 \frac{Z}{A} \left(\frac{m_e}{m_{\mu}}\right)^2 \gamma^2 \left(1 - \frac{\beta_v^2}{2}\right) \rho \Delta s$$

$$\Delta E = E \ \beta_v^2 \ \frac{\Delta p}{p}, \text{ so:}$$

$$\Delta s = \frac{\Delta E}{dE/ds} = \frac{1}{dE/ds} E \ \beta_v^2 \ \frac{\Delta p}{p}$$
o

SO

$$\frac{\Delta\epsilon_z}{\epsilon_z} = \frac{0.06}{2\sigma_\gamma^2} \frac{Z}{A} \left(\frac{m_e}{m_\mu}\right)^2 \gamma^2 \left(1 - \frac{\beta_v^2}{2}\right) \rho \frac{\beta_v^2 E}{dE/ds} \frac{\Delta p}{p}$$

This can be compared with the cooling term

$$\frac{\Delta \epsilon_z}{\epsilon_z} = -J_z \frac{dp}{p}$$

giving an equilibrium:

$$\frac{\sigma_p}{p} = \left(\left(\frac{m_e}{m_\mu} \right) \sqrt{\frac{0.06 \ Z \ \rho}{2 \ A \ (d\gamma/ds)}} \right) \sqrt{\frac{\gamma}{\beta_v^2}} \left(1 - \frac{\beta_v^2}{2} \right) \frac{1}{J_z}$$
(29)

For Hydrogen, the value of the first parenthesis is ≈ 1.36 %.

Without coupling, J_z is small or negative, and the equilibrium does not exist. But with equal partition functions giving $J_z \approx 2/3$ then this expression, for hydrogen, gives: the values plotted below.

The following plot shows the dependency for hydrogen

It is seen to favor cooling at around 200 MeV/c, but has a broad minimum.

Example: RFOFO Ring

R.B. Palmer R. Fernow J. Gallardo¹, and Balbekov²

¹Fernow and others: MUC-232, 265, 268, & 273

²V.Balbekov "Simulation of RFOFO Ring Cooler with Tilted Solenoids" MUC-CONF-0264

Performance

Using Real Fields, but no windows or injection insertion

Longitudinal Cooling Conclusion

- Good cooling in 6 D in a ring
 - $\, {\rm But\ injection/extraction\ difficult}$
 - Requires short bunch train
- Also good 6D cooling in HP Gas Helix (not discussed here)
 - $-\operatorname{But}$ difficult to introduce appropriate frequency rf
 - $-\operatorname{And}$ questions about use of gas with an ionizing beam
- Converting Ring cooler to a large Helix (Guggenheim)
 - $\, {\rm Solves} \, \, {\rm Injection/extraction} \, \, {\rm problem}$
 - Solves bunch train length problem
 - $-\operatorname{Allows}$ tapering to improve performance
 - $-\operatorname{But}$ more expensive than ring