Program of the 3rd LC School

W. Chou (Fermilab, USA)

W. Chou

2008 International LC School Oakbrook Hills, Illinois, USA

1

Goal of the School & Why You are Here

- To train the next generation for future big accelerators in the high-energy physics field
- Construction of the LHC has been completed
- The next "Big One" is likely to be a TeV Linear Collider
- The construction period is usually very long (in the order of 15-20 years). We need to prepare the army and leaders now
- In your application, you said you want to work on it
- In the recommendation, your supervisor said you are <u>very</u> good

How You Were Selected

- The school received 245 applications from 37 countries.
- Due to limited resources, only 57 students from 14 countries were accepted. The average acceptance ratio is about one third.
- Unfortunately, 9 students did not receive visa and 2 dropped out due to personal reasons.
- Admission was "need blind" no student should be turned away just because he/she can't afford it.
- The committee members read every CV and recommendation letter before they made the decision if one should be selected or rejected.

Third International Accelerator School for Linear Colliders – Curriculum (v.3, 03/18/2008)

October 19-29, 2008, Oak Brook Hills Marriott Hotel, Oak Brook, Illinois, U.S.A.

Daily Schedule

Breakfast	08:00-09:00
Morning	09:00 - 12:30, including ¹ / ₂ -hour break
Lunch	12:30 - 14:00
Afternoon	$14:00 - 17:30$, including $\frac{1}{2}$ -hour break
Dinner	17:30 - 19:00
Tutorial & homework	19:00 - 22:00

List of Courses

	Morning	Afternoon	Evening
October 10	woming	Amingly accepted at	Decention
October 19		Arrival, registration	Reception
October 20	Introduction	Sources & bunch compressors	Tutorial & homework
October 21	Damping ring I	Linac I	Tutorial & homework
October 22	Damping ring II	Linac II	Tutorial & homework
October 23	LLRF & high power RF	Beam delivery & beam-beam	Tutorial & homework
October 24	Site visit to Fermilab	Site visit to Fermilab	Free time
October 25	Superconducting RF & ILC I	Excursion	Tutorial & homework
October 26	Superconducting RF & ILC II	Room temperature RF & CLIC II	Tutorial & homework
	Room temperature RF & CLIC I		
October 27	Instrumentation & control	Muon collider	Tutorial & homework
October 28	Final exam	Operations;	Banquet;
		Physics & detectors	Student Award Ceremony
October 29	Departure		

Lecturers of the 2008 LC Accelerator School (v.9, 07/23/2008)

Lecture	Торіс	Lecturer
1	Introduction	Carlo Pagani (INFN/Milano)
2	Sources & bunch compressors	Masao Kuriki (Hiroshima Univ.)
3	Damping ring	Mark Palmer (Cornell Univ.)
4	Linac	Toshiyasu Higo (KEK)
5	LLRF & high power RF	Stefan Simrock (DESY)
6	Beam delivery & beam-beam	Deepa Angal-Kalinin (Daresbury)
7	Superconducting RF & ILC	Nikolay Solyak (Fermilab)
8	Room temperature RF & CLIC	Frank Tecker (CERN)
9	Instrumentation & control	Toshiyuki Okugi (KEK)
10	Muon collider	Bob Palmer (BNL)
11	Operations	Tom Himel (SLAC)
12	Physics & detectors	Rolf Heuer (DESY/CERN)
Special	How the Fermilab accelerator complex works	Roger Dixon (Fermilab)
Special	Hands-on training	Bob Mau (Fermilab)

Program

	Monday, October 20	Tuesday, October 21	Wednesday, October 22	Thursday, October 23
Morning	Opening remarks (10)	Lecture 3a – Damping ring I (180)	Lecture 3b – Damping ring II (180)	Lecture 5 – LLRF & high power
09:00 - 12:30	Young-Kee Kim (Fermilab/Univ. of	Mark Palmer (Cornell Univ.)	Mark Palmer (Cornell Univ.)	RF (180)
	Chicago)	• Role of damping rings	Brief overview of technical	Stefan Simrock (DESY)
		High-level overview of	systems	RF system overview
	Lecture 1 – Introduction (180)	structure, and principles of	• R&D challenges for	• LLRF
	Carlo Pagani (INFN/ Univ. of	operation	selected technical	• Timing and
	Milano)	Review of basic linear	components	synchronization
	• Why LC	beam dynamics	 injection/extraction 	Modulators
	• What's ILC	• Damping ring lattice	kickers	Klystrons
	Layout of ILC	Radiation damping	damping wiggler	RF distribution
	Parameter choices &	(derivation of damping	Brief overview of beam	
	optimization	times, and the need for a	dynamics issues	
	Overview of accelerator	damping wiggler in LC	 Selected beam dynamics 	
	issues	damping rings)	issues	
	• Other future lepton	Quantum excitation and	impedance effects	
	colliders: CLIC and muon	equilibrium beam	electron cloud effects	
	collider	emittances		
Afternoon	Lecture 2 – Sources & bunch	Lecture 4a – Linac I (180)	Lecture 4b – Linac II (180)	Lecture 6 – Beam delivery & beam-
14:00 - 17:30	compressors (180)	Toshiyasu Higo (KEK)	Toshiyasu Higo (KEK)	beam (180)
	Masao Kuriki (Hiroshima Univ.)	 Phases & superposition 	Traveling wave linacs	Deepa Angal-Kalinin (Daresbury)
	• e- gun	 Basics of RF cavities 	Structure parameters	Overview
	• e+ sources	• Lumped circuit analogy,	Scaling relationships for	Beam-beam interaction and
	 Polarized sources 	metrics	TW linacs	crossing angle
	Bunch compressors	RF Pillbox cavity	• Power flow & beam	Collimation
	Spin rotator	Coupled rf-cavities, mode	loading	 Accelerator-detector
			 Multi hunch energy gain 	interface, shielding and
		structure	• Multi-bulleti chergy galli	
		 Shunt impedance, transit- 	 Wakefields & impedances 	beam dump
		 Shunt impedance, transit- time factor 	 Wakefields & impedances Linac lattice 	beam dumpBackground and detector
		 Shunt impedance, transit- time factor Standing wave linacs and 	 Wakefields & impedances Linac lattice Emittance preservation & 	 beam dump Background and detector protection
		 Shunt impedance, transit- time factor Standing wave linacs and structures 	 Wakefields & impedances Linac lattice Emittance preservation & instabilities 	 beam dump Background and detector protection Beam monitoring and
		 Shunt impedance, transit- time factor Standing wave linacs and structures Beam loading and power 	 Wakefields & impedances Linac lattice Emittance preservation & instabilities Beam based alignment 	 beam dump Background and detector protection Beam monitoring and control at final focus
		 Shunt impedance, transit- time factor Standing wave linacs and structures Beam loading and power coupling 	 Wakefields & impedances Linac lattice Emittance preservation & instabilities Beam based alignment 	 beam dump Background and detector protection Beam monitoring and control at final focus Luminosity optimization
		 Shunt impedance, transit- time factor Standing wave linacs and structures Beam loading and power coupling Slow wave structures 	 Wakefields & impedances Linac lattice Emittance preservation & instabilities Beam based alignment 	 beam dump Background and detector protection Beam monitoring and control at final focus Luminosity optimization

Program (cont...)

	Friday, October 24
Day	Site visit to Fermilab
09:00	Bus leaving hotel for Fermilab
09:30 - 10:30	Special lecture – How the Fermilab accelerator complex works (60) Roger Dixon (Fermilab)
10:30 – 17:00	Students will be divided into 6 groups. Each group has ~9 students and will receive ~50 minutes hands-on training in the Main Control Room. The instructor is Bob Mau (Fermilab). Students will have lunch at Fermilab and visit several facilities. Details will come later.
17:00	Bus leaving Fermilab for hotel
Evening 19:00 – 22:00	Free time

Fermilab tour:		
 Hands-on training in the Main Control Room 		
•Wilson Hall 15 th floor		
Linac gallery		
CDF and D0		
Industrial Buildings		
• SCRF sites		

Program (cont...)

	Saturday, October 25	Sunday, October 26	Monday, October 27	Tuesday, October 28
Morning	Lecture 7a – Superconducting RF	Lecture 7b – Superconducting RF	Lecture 9 – Instrumentation &	08:00 – 12:30 Final exam (270)
09:00 - 12:30	& ILC I (180)	& ILC II (90)	control (180)	
	Nikolay Solyak (Fermilab)	Nikolay Solyak (Fermilab)	Toshiyuki Okugi (KEK)	
	Superconductivity basics	Power Coupler	Beam monitoring	
	Cavity design & SRF	 HOMs & HOM Couplers 	Precision instrumentation	
	constraints	Slow and fast tuner	 Feedback systems 	
	Lorentz force detuning in SCRF	• ILC design & challenges	Energy stabilityOrbit control	
	Microphonics & vibration	Lecture 8a – Room temperature	• Electronics	
	issues	RF & CLIC I (90)	• Data processing	
	Cavity fabrication and	Frank Tecker (CERN)		
	tuning	Gradient limits at X-band		
	Surface preparation	Breakdown mechanism		
	Gradient limit and spread	Pulse heating		
	 Cryogenics 	• Pulse train formats		
	ILC cryomodules	• Klystron <i>vs.</i> beam driven		
	Alignment issues	• RF power manipulation		
		options		
Afternoon	Excursion to Downtown Chicago	Lecture 8b – Room temperature	Lecture 10 – Muon collider (120)	Lecture 11 – Operations (90)
14:00 - 17:30		RF & CLIC II (180)	Bob Palmer (BNL)	Tom Himel (SLAC)
		Frank Tecker (CERN)	Muon collider basics	Reliability
		CLIC layout	Machine layout	• Availability
		Cavity fabrication and	 Major sub-systems 	Remote control and global
		tuning	Challenges	network
		• HOM out-coupling		Ladar 12 Dianta 8 ladardar
		• Thermal stability	Study time (60)	Lecture $12 - Physics & detectors$
		• Driver beam stability		(90) Bolf Diotor Houor (DESV/CEDN)
		• Power coupling		Tora scale physics
		• Alignment issues		 Physics beyond 1 TeV
		CLIC design & technical		
		cnallenges		ILC VS. LITC Detectors
Evening	Tutorial & homework	Tutorial & homework	Tutorial & homework	Banquet:
19:00 - 22:00				Student Award Ceremony

Lectures, Homework and Exam

- All lectures are in seminar style, no text books.
- Latest version of the lectures is available on the web.
- There are homework assignments. But they will not be graded.
- Each lecturer will be available for one evening during the tutorial and homework time.
- There will be a final exam on Oct 28. Some of the exam problems are similar to those in the homework, some are new.
- Based on the exam grade, the curriculum committee will select top 10 students and have an award ceremony on October 28.

8 Characteristics of a Good School

- 1. High expectations for every student
 - Learn as much as you can
 - Make as many new friends as you can
- 2. Community support
- 3. A rigorous curriculum and fair assessments
- 4. Sufficient resources to help all students achieve
- 5. Safe, healthy and supportive learning environments
- 6. Classrooms equipped for teaching and learning
- 7. Qualified teachers in classrooms
- 8. Strong school leadership