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Lecture Overview
Damping Rings Lecture I

– Part 1:  Introduction and DR Basics
• Overview

• Damping Rings Introduction
• General Linear Beam Dynamics

– Part 2: Low Emittance Ring Design
• Radiation Damping and Equilibrium Emittance
• ILC Damping Ring Lattice

Damping Rings Lecture II
– Part 1: Technical Systems

• Systems Overview and Review of Selected Systems

• R&D Challenges

– Part 2: Beam Dynamics Issues
• Overview of Impedance and Instability Issues

• Review of Selected Collective Effects
• R&D Challenges 
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Damping Rings Lecture I
Our objectives for today’s lecture are to:
Examine the role of the damping rings in the ILC accelerator 
complex;
Review the parameters of the ILC damping rings and identify key 
challenges in the design and construction of these machines;
Review the physics of storage rings including the linear beam 
dynamics and radiation damping;
Apply the above principles to the case of the ILC damping rings to 
begin to understand the major design choices that have been 
made
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Outline of DR Lecture I, Part 1
Damping Rings Introduction

– Role of Damping Rings
– ILC Damping Ring Parameters
– Damping Rings Overview

General Linear Beam Dynamics
– Storage Ring Equations of Motion
– Betatron Motion
– Twiss Parameters
– Emittance
– Coupling
– Dispersion
– Chromaticity
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The ILC Reference Design

Machine Configuration
– Helical Undulator polarized e+ source
– Two ~6.5 km damping rings in a central complex
– RTML running length of linac
– 2 ×11.2 km Main Linac
– Single Beam Delivery System
– 2 Detectors in Push-Pull Configuration

Bunch Compressors

~31 km

~8K cavities/linac operating @ 2°K
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Role of the Damping Rings

The damping rings 
– Accept e+ and e- beams with large transverse and 

longitudinal emittance and produce the ultra-low 
emittance beams necessary for high luminosity 
collisions at the IP

– Damp longitudinal and transverse jitter in the 
incoming beams to provide very stable beams for 
delivery to the IP

– Delay bunches from the source to allow feed-
forward systems to compensate for pulse-to-pulse 
variations 
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DR Reference Design Parameters

25.7msHorizontal damping time, τx

-63/-62Chromaticity, χx/χy

0.9998

1.0000
2.0002

Partition numbers, Jx

Jy

Jz

12.9msLongitudinal damping time, τz

1.28 × 10-3Momentum spread, σp/p

9.0mmBunch length, σz

52.40/49.31Horizontal/vertical betatron tunes, νx/ νy

4.2 × 10-4Momentum compaction, αc

3.0kHzSynchrotron frequency, fs

0.067Synchrotron tune, νs

14,516Harmonic number, h

5.0µm·radEquilibrium normalized emittance, γεx

0.09m·radInjected betatron amplitude, Ax+ Ay

1.5%RF bucket height

24MVTotal RF voltage

650MHzRF Frequency

0.14mANominal bunch current

3.5MWBeam power

8.7MeVEnergy loss per turn

0.4AAverage current

5534@1.0×1010Maximum # of bunches & particles/bunch

2625@2.0×1010Nominal # of bunches & particles/bunch

6.695kmCircumference

5.0GeVEnergy

ValueUnitsParameter
By the end of this lecture, the goal 
is for each of you to be able to 
explain the reasons that the 
parameters in this table have the 
values that are specified.

By the end of the second lecture 
tomorrow, you should be able to 
identify and explain why several of 
these parameters are candidates 
for further optimization.

So, let’s begin our tour of ring 
dynamics and what these 
parameters mean…
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The RDR Damping Ring Layout
OCS6 TME-style Lattice
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Damping Ring Design Inputs
A number of parameters in the previous table are (essentially) design inputs for the 
damping rings (or can be directly inferred from such inputs). The table below 
summarizes these critical interface issues.
We will examine these requirements from the perspective of the collision point first and 
then look at requirements coming from other sub-systems downstream and upstream of 
the DRs.

Don’t forget, however, that these parameters are the result of a great deal of back-and-
forth negotiation between sub-systems and between accelerator and HEP physicists. 
Thus they represent a mix of technological limits and physics desires…

Set by positron source.±0.5%Injected energy spread

Set by positron source.0.09 m-radInjected betatron amplitude (Ax+Ay)

Upper limit set by RF technology.~1 msMax. Linac RF pulse length

Upper limit set by bunch compressors.9 mm (�6 mm)Max. Extracted bunch length

Upper limit set by bunch compressors.0.15%Max. Extracted energy spread

Set by luminosity goal.
8 µm horizontally
20 nm vertically

Extracted normalized emittances

Set by positron source.
Partially determines required damping time.

0.01 m-radInjected normalized emittance

Lower limit set by luminosity goal.~5.6×1013Min. Particles per machine pulse

Set by cryogenic cooling capacity.
Partially determines required damping time.

5 HzMachine repetition rate

Upper limit set by RF technology.~9 mAMax. Avg. current in main linac

Upper limit set by disruption at IP.1×1010 - 2×1010Particles per bunch
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Downstream Requirements

The principle parameter driver is the production of luminosity at 
the collision point

where 
N is the number of particles per bunch (assumed equal for all bunches) 
fcoll is the overall collision rate at the interaction point (IP)

σx and σy are the horizontal and vertical beam sizes (assumed equal for 
all bunches)
HD is the luminosity enhancement factor 

Ideally we want:
– High intensity bunches
– High repetition rate
– Small transverse beam sizes

2

4
coll

D
x y

N f

πσ σ
=L H
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Parameters at the Interaction Point
The parameters at the interaction point have been chosen to provide a nominal 
luminosity of 2×1034 cm-2s-1.  With

N = 2×1010 particles/bunch
σx ~ 640 nm ⇔ βx

* = 20  mm, εx = 20    pm-rad
σy ~  5.7 nm ⇔ βy

* = 0.4 mm, εy = 0.08 pm-rad
HD~ 1.7

In order to achieve the desired luminosity, an average collision rate of ~14kHz is 
required (we will return to this parameter shortly). The beam sizes at the IP are 
determined by the strength of the final focus magnets and the emittance, phase space 
volume, of the incoming bunches.  

A number of issues impact the choice of the final focus parameters.  For example, the 
beam-beam interaction as two bunches pass through each other can enhance the 
luminosity, however, it also disrupts the bunches. If the beams are too badly disrupted, 
safely transporting them out of the detector to the beam dumps becomes quite difficult. 
Another effect is that of beamstrahlung which leads to significant energy losses by the 
particles in the bunches and can lead to unacceptable detector backgrounds. Thus the 
above parameter choices represent a complicated optimization.

( )
2
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Emittance Transport from the DR to the IP

x

x x xσ β ε=

x x xσ γ ε′ =

Twiss parameter

Normalized Emittance:
Use of the conjugate phase-space coordinates (x,px) 
from the Hamiltonian instead of (x,x′) gives:

px = px′ = mcβγx′

Thus we define the normalized emittance as

εn = βγεgeo ≈ γεgeo for a relativistic electron

The geometric emittances required at the IP are:
εx = 20    pm-rad
εy = 0.08 pm-rad

We need to use the relativistic invariant quantity, 
the normalized emittance, in order to project this 
to the requirements for the damping ring.

Note: We will take a more detailed look at emittance in 
the DR later in this lecture

x′
initialp

�

s
�

x′
finalp

�

s
�

xp
�

xp
�

longitudinal 
acceleration
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Emittance Transport from the DR to the IP
We can now infer the requirements for the equilibrium emittance 
requirements for the ILC DRs

DR extracted emittances must
allow for downstream 
emittance growth during 
transport as well as for the 
finite damping time during the 
machine pulse cycle

½ × (40 nm-rad)

½ × (10 µm-rad)

Equilibrium εn @ DR

2    pm40 nm-rad0.08 pm-rady

0.5 nm10 µm-rad20    pm-radx

Equilibrium εgeo @ DR (5 GeV)εn @ IP εgeo @ IP (250 GeV)

Allow for 100% vertical emittance growth downstream of DRs

BMAD/ILCv curve shows error bars

LET Benchmarking (J. Smith)
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Main Linac (ML) Parameters
The bunch-train structure is largely determined by the design of 
the superconducting RF system of the main linac (ML)

– 1 ms RF pulse
– 9 mA average current in each pulse
– 5 Hz repetition rate

This leads to the nominal bunch train parameters:
nb = 2625 bunches per pulse
∆tb ~ 380 ns for uniform loading through pulse

The resulting collision rate at the IP is then
fcoll = 13.1 kHz

consistent with the target luminosity.  The 5 Hz repetition rate
places the primary constraint on the DR damping times.  In order
for the bunches in each pulse to experience 8 full damping cycles, 
a transverse damping time of ≤25 ms is required.

RF power system

Cryogenic load

Primary Limitation
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From the discussion on the preceding page, we can now see 
the basic bunch train structure

1 msec pulse
~3000 uniformly spaced bunches
~350 ns between bunches

�

Thus, the damping rings must act as a reservoir to store the full train.  
Because we cannot afford to build a 300+ km ring, we must fold the long 
bunch train into a much shorter ring � key trade-offs between bunch 
spacing and ring circumference.

Note that there will be significant overlap between the injection and 
extraction cycles:

– Structure of machine
– Maintain relatively constant beam loading

Baseline Bunch Train

∼ ≫Train Length of 300km  ML length > DR Circumference

DR
Injection Systems

Extraction to RTML
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Bunch Compressors
Shortly after extraction from the damping ring, the bunches will
traverse the bunch compressors. These devices take the relatively 
long bunches of the damping rings (σz ∼ fraction of a centimeter) 
and manipulate the longitudinal phase space to provide bunches 
that are compatible with the very small focal point at the IP   
(σz ∼ 200-500 microns). Technical and cost limitations place 
serious constraints on how long the bunch from the DR can be 
and the maximum energy spread.

RDR DR Bunch length:  9 mm � 2-stage bunch compressor
Extracted energy spread within the bunch compressor acceptance

From the downstream point of view, lowering the bunch length to
6mm would allow the cheaper and simpler solution of using a single stage 
bunch compressor.  From the DR point of view, shorter bunches require 
smaller values of the ring momentum compaction (impacts sensitivity to 
collective effects) or higher RF voltage (more RF units, hence greater cost).
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Upstream Requirements
The key upstream requirement is the emittance of the beams produced by the 
injectors.  Positron production via a heavy metal target results in much larger 
emittances due to scattering in the target for positrons than for electrons whose 
emittance can be controlled by the design of the injector gun and its cathode.  
The approach to the target extraction emittance is shown for various DR 
damping times assuming the target e+ injected emittance (εn = 0.01 m-rad).

τ = 21 ms
24 ms

27 ms
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Upstream Requirements
In addition to the need to damp the 
large emittance beams that are 
injected from the positron source, the 
injected beams are expected to have 
potentially large betatron amplitudes 
and energy errors.  This requires that 
the acceptance of the damping ring to 
be sufficiently large to accommodate 
these oscillations immediately after 
injection.  It places important 
constraints on the minimum aperture 
of the vacuum system and the 
minimum good field regions of all of 
the magnets (including the damping 
wigglers).  

Particle capture rates assuming 
that the limiting physical aperture 
in the damping rings is due to the 
vacuum chambers in the wiggler 
regions.  The choice of a 
superferric wiggler design, with 
large physical aperture, allows for 
a DR design with full acceptance.

From DR Baseline Configuration Study
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Storage Ring Basics
Now we will begin our review of storage ring basics.  In particular, 
we will cover:

– Ring Equations of Motion
– Betatron Motion
– Emittance
– Transverse Coupling
– Dispersion and Chromaticity
– Momentum Compaction Factor
– Radiation Damping and Equilibrium Beam Properties
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Equations of Motion
Particle motion in electromagnetic fields is governed by the 
Lorentz force:

with the corresponding Hamiltonian:

For circular machines, it is convenient to convert to a curvilinear 
coordinate system and change the independent variable from time 
to the location, s-position, around the ring.  
In order to do this we transform 
to the Frenet-Serret
coordinate system.
The local radius of 

curvature is denoted by ρ.

( )dp
e E v B

dt
= + ×

� � ��

( )
1/22

2 2

, ,...x
x

c m c P eA e

x P
P x

 = + − + Φ
  

∂ ∂= = −
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��

ɺɺ  

H

H H

0r
� x

�
y
� r

�

s

Reference Orbit

0 ˆ ˆr r xx yy= + +� �
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Equations of Motion
With a suitable canonical transformation, we can re-write the 
Hamiltonian as:

Using the relations

and expanding to 2nd order in px and py yields:

which is now periodic in s.

( ) ( ) ( )
1/22

222 2
2

1 x x y y s

x
m c p eA p eA eA

cρ

 Φ   + − − − − − − 
    

ɶ H -e
H = -

2
2 2

2

E
E e p m c

c
= − Φ = −H  ,    

( ) ( )221
1

2 x x y y s

x x
p p eA p eA eA

p

ρ
ρ

  +  ≈ + + − − − −     

ɶH -
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Equations of Motion
Thus, in the absence of synchrotron motion, we can generate the equations of 
motion with:

which yields:

and

Specific field configurations are applied in an accelerator to achieve the desired 
manipulation of the particle beams.  Thus, before going further, it is useful to 
look at the types of fields of interest via the multipole expansion of the 
transverse field components.

, , ,x y
x y

x p y p
p x p y

∂ ∂ ∂ ∂′ ′ ′ ′= = − = = −
∂ ∂ ∂ ∂

ɶ ɶ ɶ ɶH H H H
            

2

0
2

1 ,yB px x
x

B p

ρ
ρ ρ ρ

 +′′ − = ± + 
 

    top / bottom sign for + / - charges

2

0 1xB p x
y

B pρ ρ
 ′′ = + 
 

∓ Note: 1/Bρ is the beam rigidity
and is taken to be positive
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Magnetic Field Multipole Expansion
Magnetic elements with 2-dimensional fields of the form

can be expanded in a complex multipole expansion:

In this form, we can normalize to the main guide field strength,
-Bŷ, by setting b0=1 to yield:

( ) ( )ˆ ˆ, ,x yB B x y x B x y y= +
�

( )( )

( ) ( ) ( ) ( )

0
0

0 0 , 0,0, 0,0

( , ) ( , )

1 1

! !

n

y x n n
n

n n
y x

n nn n

x yx y

B x y iB x y B b ia x iy

B B
b a

n B x n B x

∞

=

==

+ = + +

∂ ∂= =
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∑

with  and  

( ) ( ) ( )( )
00

1 1 n

y x y x n n
n

e
B iB B iB b ia x iy q

B pρ ρ

∞

=

+ = + = + + ±∑∓   for  
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Multipole Moments
Upright Fields

Dipole:

Quadrupole:

Sextupole:

Octupole:

Skew Fields

Dipole (θ = 90°) :

Quadrupole (θ = 45°) :

Sextupole (θ = 30°) :

Octupole (θ = 22.5°) :

0

0x

e
B
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0
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p
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B mxy

p
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Equations of Motion (Hill’s Equation)
We next want to consider the equations of motion for a ring with
only guide (dipole) and focusing (quadrupole) elements:

Taking p=p0 and expanding the equations of motion to first order 
in x/ρ and y/ρ gives:

where the upper/low signs are for a positively/negatively charged 
particle.

The focusing functions are periodic in s:  

( ) ( ) ( ) ( )

( ) ( ) ( )

2

1
0,

0,

x x

y y

x K s x K s k s
s

y K s y K s k s

ρ
′′ + = =

′′ + = = ±

∓          

           

( )0 0
0 0 01y x

p p
B B kx B kx B ky B kx

e e
ρ ρ= + = = =∓ ∓    and    

also commonly
denoted as k1

( ) ( ), ,x y x yK s L K s+ =
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Solutions to Hill’s Equation
Some introductory comments about the solutions to Hill’s 
equations:

– The solutions to Hill’s equation describe the particle motion around a 
reference orbit, the closed orbit.  This motion is known as betatron
motion.  We are generally interested in small amplitude motions around 
the closed orbit (as has already been assumed in the derivation of the 
preceding pages).

– Accelerators are generally designed with discrete components which 
have locally uniform magnetic fields.  In other words, the focusing 
functions, K(s), can typically be represented in a piecewise constant 
manner.  This allows us to locally solve for the characteristics of the 
motion and implement the solution in terms of a transfer matrix.  For 
each segment for which we have a solution, we can then take a particle’s 
initial conditions at the entrance to the segment and transform it to the 
final conditions at the exit. 
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Solutions to Hill’s Equation
Let’s begin by considering constant K=k:

where x now represents either x or y. The3 solutions are:

For each of these cases, we can solve for initial conditions and
recast in 2×2 matrix form:

0x kx′′ + =

( ) ( )

( ) ( )

( ) sin cos , 0

( ) , 0

( ) sinh cosh , 0

x s a ks b ks k

x s as b k

x s a k s b k s k

= + >

= + =

= + <

           

                                      

     

Focusing Quadrupole

Defocusing Quadrupole

Drift Region

011 12

021 22

xm mx

xm mx

   
=     ′′    

( )0 0x s s x= M
� �
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Transfer Matrices
We can now re-write the solutions of the preceding page in 
transfer matrix form:

where                  

( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

0

1
cos sin

sin cos

1

0 1

1
cosh sinh

sinh cosh

k k
k

k k k

s s

k k
k

k k k


 
 
 
 − 

 =  
 
 
 
 
 
 
 

M

ℓ ℓ

ℓ ℓ

ℓ

ℓ ℓ

ℓ ℓ

0.s s= −ℓ

Focusing
Quadrupole

Defocusing
Quadrupole

Drift Region
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c.o.

Transfer Matrices
Examples:

– Thin lens approximation:

– Sector dipole (entrance and exit faces ┴ to closed orbit):

0

1
0, limf

K→
→

ℓ
ℓ

ℓ
       =

focusing defocusing

1 0 1 0

1 1 1 1f f

   
= =   −   

M M            

sector
2

cos sin 1

1
sin cos 1

θ ρ θ
θ

θ θ ρ
ρ ρ

   
   = ≈ =
   − −   
   

M
ℓ

ℓ
ℓ       where  
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Transfer Matrices
Transport through an interval s0� s2 can be written as the product 
of 2 transport matrices for the intervals s0� s1 and s1� s2:

and the determinant of each transfer matrix is:  

Many rings are composed of repeated sets of identical magnetic 
elements.  In this case it is particularly straightforward to write the 
one-turn matrix for P superperiods, each of length L, as:

with the boundary condition that: 

The multi-turn matrix for m revolutions is then:  

( ) ( ) ( )2 0 2 1 1 0s s s s s s=M M M

( ) P

ring s L s = + M M

( ) mP
s  M

( ) ( )s L s s+ =M M

1i =M
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Twiss Parameters
The generalized one turn matrix can be written as:

This is the most general form of the matrix.  α, β, and γ are known 
as either the Courant-Snyder or Twiss parameters (note: they 
have nothing to do with the familiar relativistic parameters) and Φ
is the betatron phase advance.  The matrix J has the properties:

The n-turn matrix can be expressed as: 
which leads to the stability requirement for betatron motion: 

cos sin sin
cos sin

sin cos sin

α β
γ α

Φ + Φ Φ 
= = Φ + Φ − Φ Φ − Φ 

M I J

2 2, 1
α β

βγ α
γ α

 
= = − ⇔ = + − − 

J J I     

Identity matrix

( ) ( )cos sinn n n= Φ + ΦM I J

( )Trace 2cos 2= Φ ≤M
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The Envelope Equations
We will look for 2 independent solutions to Hill’s Equation of the 
form:

Then w and ψ satisfy:

Since any solution can be written as a superposition of the above 
solutions, we can write [with wi=w(si)]:

( ) ( ) ( ) ( ) ( ) ( )i s i sx s aw s e x s aw s eψ ψ−∗= =  and  

3

2

1
0

1

w Kw
w

w
ψ

′′ + − =

′ =

( ) ( )

2
2 1 1 2

1

2 1
1 1 2 2 1 2 1

1 2
1 2 2 1 2

cos sin sin

1
sin cos cos sin

w
w w w w

w
s s

w w w w w w w
w w

w w w w w

ψ ψ ψ

ψ ψ ψ ψ

 ′− 
 =
 ′ ′+  ′ ′ ′− − − +   

  

M

Betatron envelope

and

phase equations
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The Envelope Equations
Application of the previous transfer matrix to a full turn and direct 
comparison with the Courant-Snyder form yields:

the betatron envelope equation becomes

and the transfer matrix in terms of the Twiss parameters can 
immediately be written as:

2

2

w

ww

β
βα

=
′′= − = −

( )
( )

( )

2
1 1 2

1

2 1

1 2 1 2 1
2

21 2 1 2
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sin cos cos sin

s s
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 =  + − − ∆ + ∆ ∆ − ∆
 
 
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1 0

2 4
K
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 
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General Solution to Hill’s Equation
The general solution to Hill’s equation can now be written as:

We can now define the betatron tune for a ring as:

If we make the coordinate transformation:

we see that particles in the beam satisfy the equation for simple 
harmonic motion:
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The Courant-Snyder Invariant
With K real, Hill’s equation is conservative.  We can now take 

After some manipulation, we can combine these two equations to 
give:

Recalling that βγ = 1+α2 yields:
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Emittance
The equation

describes an ellipse with area πε.

For an ensemble of particles, each 
following its own ellipse, we can 
define the moments of the beam as:

The rms emittance of the beam is then
which is the area enclosed by the ellipse of an rms particle.
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Coupling
Up to this point, the equations of motion that we have considered 
have been independent in x and y.  An important issue for all 
accelerators, and particularly for damping rings which attempt to 
achieve a very small vertical emittance, is coupling between the
two planes.  For the damping ring, we are primarily interested in 
the coupling that arises due to small rotations of the quadrupoles. 
This introduces a skew quadrupole component to the equations of 
motion. 

Another skew quadrupole term arises from “feed-down” when the 
closed orbit is displaced vertically in a sextupole magnet.  In this 
case the effective skew quadrupole moment is given by the 
product of the sextupole strength and the closed orbit offset
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Coupling 
For uncoupled motion, we can convert the 2D (x,x′) and (y,y′) 
transfer matrices to 4D form for the vector (x,x′,y,y′):

where we have arbitrarily chosen this case to be focusing in x.  
The matrix is block diagonal and there is no coupling between the 
two planes.  If the quadrupole is rotated by angle θ, the transfer 
matrix becomes:

and motion in the two planes is coupled. 
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Coupling and Emittance
Later in this lecture we will look in greater detail at the sources of 
vertical emittance for the ILC damping rings.  

In the absence of coupling and ring errors, the vertical emittance 
of a ring is determined by the the radiation of photons and the fact 
that emitted photons are randomly radiated into a characteristic
cone with half-angle θ1/2~1/γ.  This quantum limit to the vertical 
emittance is generally quite small and can be ignored for presently 
operating storage rings.  

Thus the presence of betatron coupling becomes one of the 
primary sources of vertical emittance in a storage ring.   



October 21, 2008 Damping Rings I 40

Dispersion
In our initial derivation of Hill’s equation, we assumed that the 
particles being guided had the design momentum, p0, thus 
ignoring longitudinal contributions to the motion.  We now want to 
address off-energy particles.  Thus we take the equation of 
motion:

and expand to lowest order in               and          which yields:

We have already obtained a homogenous solution, xβ(s).  If we 
denote the particular solution as D(s)δ, the general solution is:
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Dispersion Function and Momentum Compaction

The dispersion function satisfies:

with the boundary conditions: 

The solution can be written as the sum of the solution to the 
homogenous equation and a particular solution:

which can be expressed in a 3×3 matrix form as:
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Momentum Compaction
We can now consider the difference in path length experienced by
such an off-momentum particle as it traverses the ring.  The path 
length of an on-momentum particle is given by:

For the off-momentum case, we then have:
I1 is the first radiation integral.

The momentum compaction factor, αc, is defined as:
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The Synchrotron Radiation Integrals
I1 is the first of 5 “radiation integrals” that we will study in this 
lecture.  These 5 integrals describe the key properties of a storage 
ring lattice including:

– Momentum compaction
– Average power radiated by a particle on each revolution
– The radiation excitation and average energy spread of the beam
– The damping partition numbers describing how radiation damping is 

distributed among longitudinal and transverse modes of oscillation
– The natural emittance of the lattice

In later sections of this lecture we will work through the key 
aspects of radiation damping in a storage ring
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Chromaticity
An off-momentum particle passing through a quadrupole will be 
under/over-focused for positive/negative momentum deviation.  
This is chromatic aberration.  Hill’s equation becomes:

We will evaluate the chromaticity by first looking at the impact of 
local gradient errors on the particle beam dynamics.

( )( )0 1 0x K s xδ′′ + − =  
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Effect of a Gradient Error
We consider a local perturbation of the focusing strength 

K = K0+∆Κ. The effect of ∆Κ can be represented by including a
thin lens transfer matrix in the one-turn matrix.  Thus we have

and

With Φ=Φ0+∆Φ, we can take the trace of the one-turn matrix to 
give:
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Effect of a Gradient Error
Using the relation:  

we can identify:

Thus  we can write:

and we see that the result of gradient errors is a shift in the 
betatron tune.  For a distributed set of errors, we then have:

which is the result we need for evaluating chromatic aberrations.  
Note that the tune shift will be positive/negative for a 
focusing/defocusing quadrupole.
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Chromaticity
We can now write the betatron tune shift due to chromatic 
aberration as:

The chromaticity is defined as the change in tune with respect to 
the momentum deviation:

Because the focusing is weaker for a higher momentum particle, 
the natural chromaticity due to quadrupoles is always negative.  
This can be a source of instabilities in an accelerator.  However, 
the fact that a momentum deviation results in a change in 
trajectory (the dispersion) as well as the change in focusing 
strength, provides a route to mitigate this difficulty.
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Sextupoles
Recall that the magnetic field in a sextupole can be written as:

Using the orbit of an off-momentum particle
we obtain

and

where the first terms in each expression are a quadrupole feed-
down term for the off-momentum particle. Thus the sextupoles
can be used to compensate the chromatic error.  The change in 
tune due to the sextupole is
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Outline of DR Lecture I, Part 2
Radiation Damping and Equilibrium Emittance

– Radiation Damping
– Synchrotron Equations of Motion
– Synchrotron Radiation Integrals
– Quantum Excitation and Equilibrium Emittance
– Summary of Beam Parameters and Radiation Integrals

ILC Damping Ring Lattice
– Damping Ring Design Optimization
– The OCS Lattice
– The DCO Lattice
– Summary of Parameters and Design Choices
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Synchrotron Radiation and Radiation Damping

Up to this point, we have treated the transport of a relativistic 
electron (or positron) around a storage ring as a conservative 
process.  In fact, the bending field results in the particles radiation 
synchrotron radiation.  

The energy lost by an electron beam on each revolution is 
replaced by radiofrequency (RF) accelerating cavities.  Because 
the synchrotron radiation photons are emitted in a narrow cone (of 
half-angle 1/γ) around the direction of motion of a relativistic 
electron while the RF cavities are designed to restore the energy 
by providing momentum kicks in the ŝ direction, this results in a 
gradual loss of energy in the transverse directions.  This effect is 
known as radiation damping.
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Synchrotron Radiation
We will only concern ourselves with electron/positron rings.  The instantaneous 
power radiated by a relativistic electron with energy E in a magnetic field 
resulting in bending radius ρ is:

We can integrate this expression over one revolution to obtain the energy loss 
per turn:

For a lattice with uniform bending radius (iso-magnetic) this yields:

If this energy were not replaced, the particles would lose energy and gradually 
spiral inward until they would be lost by striking the vacuum chamber wall.  The 
RF cavities replace this lost energy by providing momentum kicks to the beam 
in the longitudinal direction.

( )
4 2 3

32 2 5
2

8.85 10 /
2 2

cC E e c
P C E B C m GeVγ

γ γ γπρ π
−= = = ×   where   

20 2

4 4

22 2

ds
I

E E
U I

C Cγ γ

ρπ π
= =∫	    where    is the 2nd radiation integral

[ ] [ ]
[ ]

4
4

0 8.85 10
E GeV

U eV
mρ

= ×



October 21, 2008 Damping Rings I 52

Radiation Damping of Vertical Betatron Motion

We look first at the vertical dimension where, for an ideal 
machine, we do not need to consider effects of vertical dispersion.

The change in y′ after the RF cavity can be written as:
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Radiation Damping (Vertical)
Recall that an oscillation with amplitude A is described by:

If we assume that the β-function is slowly varying, so that 
α = −β′/2 ~ 0, we can write:

and (using the solution to Hill’s equation we obtained previously):

Substituting and averaging then gives:
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Radiation Damping (Vertical)
Thus the damping decrement, ie, the fractional decrease in 
amplitude in one revolution, is:

We can re-write this in exponential decay form as:

or equivalently, the damping of the vertical emittance is given by:
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Radiation Damping (Transverse)
The situation for horizontal radiation damping is somewhat more 
complicated than the vertical case because of the presence of 
dispersion generated by the bending magnets.  A similar 
procedure to that followed for the vertical case yields the result:

It is usual to write the transverse damping decrements as:

The transverse emittances will damp as:
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Synchrotron Motion
As particles circulate in a ring, the phase of their passage through the RF 
accelerating cavities must stay synchronized with respect to the RF frequency 
in order for their orbits to be stable.  This stability is provided by the principle of 
phase focusing.  In the relativistic limit we take:

The arrival time for each particle is given by:

where αc is the momentum compaction factor. 
Thus particles with δ>0 will be delayed and 
will receive a smaller kick from the RF while
particles with δ<0 will arrive early and receive
a larger kick as long as the default arrival time 
in the RF cavity is as shown on the right.  This
leads to synchrotron oscillations around a 
stable point.
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Synchrotron Equations of Motion
For our description of the longitudinal motion, we will use the 
variables:

where the 0 subscripts are for the synchronous particle.

Thus we can write:

and

where we have assumed that any synchrotron oscillations are far 
slower than the revolution time (a good assumption in practice) so 
that using the average energy loss per turn is valid.  For small
values of τ the RF voltage can be linearized as:
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Synchrotron Equation of Motion

We can now write:

where:

The solutions to the synchrotron EOM can be written as:

with

which describes the oscillation in energy and time of a particle
with respect to the ideal synchronous particle. 
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Energy Oscillation Damping
There are a couple points to note about the synchrotron EOM.  

– First, we note that the synchrotron motion is intrinsically damped towards 
the motion of the synchronous particle.  In the δ-τ plane, an off-energy 
particle will exponentially spiral towards the origin – the synchronous 
particle’s parameters

– Second, the damping coefficient, αE, is dependent on the energy of the 
particle.  This happens in two ways.  First the power radiated depends on 
energy.  Secondly, the time it takes an electron to complete a revolution 
around the ring depends on the circumference of the orbit which also 
depends on the energy. Thus we still have some work to do to 
understand the rate of damping.

We start by writing the energy lost in one turn as:
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Radiation Damping of Synchrotron Motion
We want to convert the integral over time to an integral over s. For 
a particle that is not on the closed orbit, the path length that it 
traverses can be written as:

where x represents the orbit displacement due to the energy 
deviation. We can thus write the time differential as:

and the energy loss per turn becomes:
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Radiation Damping

Evaluating              yields (after a bit of work):

where 

and 

Thus an energy deviation will damp with a time constant
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Summary of Radiation Damping
We can now summarize the radiation damping rates for each of the beam 
degrees of freedom:

and we can immediately write:
Robinson’s Theorem

For separated function lattices,             and the longitudinal damping occurs at 
roughly twice the rate of the damping in the two transverse dimensions.

Radiation damping plays a very special role in electron/positron rings because 
it provides a direct mechanism to take hot injected beams and reduce the 
equilibrium parameters to a regime useful for high luminosity colliders and high 
brightness light sources.  At the same time, the radiated power plays a 
dominant role in the design of the technical systems – we will discuss some 
aspects of this further in tomorrow’s lecture.
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Equilibrium Beam Properties
Now that we have determined the radiation damping rates, we can 
explore the equilibrium properties of the beam

– The emission of photons by the 
beam is a random process around
the ring

– Photons are emitted within a 
cone around the direction of the 
beam particle with a characteristic 

angle 1/γ
– This quantized process excites oscillations in each dimension
– In the absence of resonance or collective effects, which also serve to 

heat the beam, the balance between quantum excitation and radiation 
damping results in the equilibrium beam properties that are characteristic 
of a given lattice

E - ∆E

E

E - ∆E

E
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Quantum Excitation - Longitudinal
We will first look at the impact of quantum excitation in the 
longitudinal dimension.  

For the very short timescales corresponding to photon emission, 
we can take the equations of motion we previously obtained for 
synchrotron motion and write:

where AE is a constant of the motion.

We want to consider the change in AE due to the emission of 
individual photons.  The emission of an individual photon will not 
affect the time variable, however, it will cause an instantaneous 
change in the value of δE.
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Quantum Excitation - Longitudinal
Thus we can write:

where u is the energy radiated at time t1.  Thus

and

We can thus write the average change in synchrotron amplitude due to photon 
emission as:

where N is the rate of photon emission and u is the photon energy.
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Quantum Excitation - Longitudinal
If we now include the radiation damping term, the net change in 
the synchrotron amplitude can be written as:

The equilibrium properties of a bunch are obtained when the rate
of growth from quantum excitation and the rate of damping from 
radiation damping are equal.  For an ensemble of particles where
we identify the RMS energy amplitude with the energy spread, we 
can then write the equilibrium condition as:
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Photon Emission
is the ring-wide average of the photon emission rate, N, 

times the mean square energy loss associated with each 
emission.  In other words:

where n(u) is the photon emission rate at energy u, and

where C is the ring circumference.  Derivations of the photon 
spectrum emitted in a magnetic field are available in many texts
and we will simply quote the result:
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Energy Spread and Bunch Length
Integrating around the ring then yields the beam energy spread:

Using our solution to the synchrotron equations of motion, the 
bunch length is related to the energy spread by:

We note that the bunch length scales inversely with the square 
root of the RF voltage.
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Quantum Excitation - Horizontal
In order to evaluate the impact of the radiated photon on the 
motion of the emitting electron, we recall 

The change in closed orbit due to losing a unit of energy, u, is 
given by:

and we can then write:

where H(s) is the curly-H function.
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Horizontal Emittance
We can then write an excitation term for the rms emittance as:

Equating this expression to the damping rate yields (after some 
calculation) the equilibrium horizontal emittance:

where we have defined the next synchrotron radiation integral:
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Quantum Excitation - Vertical
In the vertical dimension, where we assume the ideal case of no 
vertical dispersion, the quantum excitation of the emittance is 
determined by the opening angle of the emitted photons. The 
resulting perturbation to the vertical motion can be described as:

and we can write:

Thus, proceeding as we have on the preceding pages, we can 
write the expression for the equilibrium emittance as:
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Vertical Emittance & Emittance Coupling
For typical storage ring parameters, the vertical emittance due to 
quantum excitation is negligible.  Assuming a typical βy values of a 
few 10’s of meters and bending radius of ~100m, we can estimate 
εy ≤ 0.1 pm. The observed sources of vertical emittance are:

– emittance coupling whose source is ring errors which couple the 
vertical and horizontal betatron motion

– vertical dispersion due to vertical misalignment of the quadrupoles and 
sextupoles and angular errors in the dipoles

The vertical and horizontal emittances in the presence of a 
collection of such errors around a storage ring is commonly 
described as:

ε0 is the natural emittance.
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Radiation Integrals and Equilibrium Quantities
Summary of Radiation 
Integrals:

Summary of Equilibrium Beam Properties:
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Emittance Scaling in Lattices
The natural emittance of a lattice is given by:

The ratio         can be tailored to provide very low emittance. It 
can be shown that the natural emittance scales approximately as:

where F is a function of the lattice design and θ is the bending angle from the 
dipoles in each lattice cell.  The natural emittance can be made small by having 
small bending angles in the dipoles of each lattice cell and by optimizing F.  
The theoretical minimum emittance (TME) lattice has 

Unfortunately, designing a very low emittance lattice in this way may have 
serious impact on the cost and/or performance of a low emittance ring.
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Achieving Ultra-Low Emittance
The path to low emittance that is pursued in a damping ring, is to provide 
insertion devices, wigglers, which dominate the radiation damping of the 
machine.  For a sinusoidal wiggler, we can write the energy loss around the ring 
as:

The overall length of the wiggler section, along with the wiggler period and peak 
field, can be adjust to make the second term dominate the radiation losses in 
the ring and hence the damping rate.  The expressions 

give the emittance contributions of the dipole and wiggler regions, respectively.  
We can then write the natural emittance of the ring as:

Thus, if the wiggler radiation dominates, the emittance contribution due to the 
dipoles is reduced by a factor of F and the ring emittance is dominated by the 
intrinsic wiggler emittance. In fact, the wiggler emittance can be quite small by 
placing the wigglers in zero dispersion regions with small βx.
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The Damping Rings Lattice
At the time of the ILC Reference Design Report, the ILC damping 
rings lattice was based on a variant of the TME (theoretical 
minimum emittance) lattice.  As noted earlier, however, there is
flexibility in the choice of lattice style in a wiggler dominated ring.

Thus, the present damping ring design employs a FODO lattice.  
The FODO-based design offers greater flexibility in setting the 
momentum compaction of the damping rings and was chosen to 
be the basis for further ILC DR design work.

It should be noted that much of the design work for each of these 
lattices is associated with the injection/extraction straights, RF and 
wiggler regions, and other specialty segments of the accelerator.   
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The DCO Lattice
Wolski, Korostelev
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DCO Design Parameters
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Arc Cell
The arc cell design 
is a slightly non-
standard 
FODO cell which 
utilizes relatively 
little dipole in each 
cell to help control 
the dispersion in the 
design. 



October 21, 2008 Damping Rings I 80

Half Ring
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DCO Straight Section
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Dispersion Suppressor Section
A dispersion 
suppressor section is 
utilized to match the 
arcs with the zero 
dispersion straight 
sections
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Chicanes
Because the ring RF frequency must be locked to the main linac RF, an 
important feature of the DR lattice is the need to adjust the circumference of the 
ring while maintaining a fixed RF frequency.  Estimates of our ability to maintain 
the circumference suggest that adjustments on the order of ±1 cm are required.  
A set of 4 chicanes, with 6 dipoles each, in each straight section provide this 
range of flexibility.
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Other Features of the DCO Lattice
Other key features of the DCO lattice include:

– Space in the injection and extraction optics to accommodate up to 33 
kicker modules

• Each module includes a stripline kicker of 30 cm length and 20 mm gap

• 30 modules with the plates operating at ±7 kV are required for operation

– Space in the straights for up to 24 RF cavities.  
• Assuming 1.7 MV per module, 19 cavities are required to provide a 6 mm 

bunch length in the high momentum compaction (αc = 2.8×10-4) configuration

– The dogleg sections provide 2 m transverse shift of the beamline after 
each wiggler straight

• The dogleg will allow installation of a photon dump to handle the forward 
radiation from each wiggler section

• It will also serve to protect sensitive downstream hardware from the wiggler 
radiation fan.

• This arrangement allows the RF and wiggler sections to be quite close and 
hence minimizes the amount of cryogenic transfer line required.
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Dynamic Aperture
72°arc cell with αc = 2.8 ×10-4 90°arc cell with αc = 1.7 ×10-4

Dynamic aperture plots show the maximum initial amplitudes of stable 
trajectories.  It is customary to overlay either the injected or equilibrium beam 
size on the plot.  Significant margin is usually desirable in a design because 
machine errors will degrade it.

– Dotted lines indicate particles with ±0.5% energy deviations

– Solid black line indicates on energy particles
– Red ellipse shows the maximum injected coordinates for the positron beam

An ongoing area of optimization is the relatively poor DA for the 100°arc cell  
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Summary
During today’s lecture, we have reviewed the basics of storage 
ring physics with particular attention on the effect know as 
radiation damping which is central to the operation of storage and 
damping rings.  We have also had an overview of the key design 
elements presently incorporated into the damping ring lattice.  The 
homework problems will provide an opportunity to become more 
familiar with some of these issues.

Tomorrow we will look in greater detail at specific systems and 
specific physics effects which play significant roles in the 
successful operation of a damping ring.
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