

Electron source for Linear Colliders KURIKI Masao (Hiroshima/KEK)

Electron Source Masao Kuriki (Hiroshima/KEK)

20-28 October 2008 3rd International Accelerator School for Linear Colliders

Electron Emission Polarized Electron Electron Gun ILC Electron Source

Laser

Summary

Electron Emission

- Polarized Electron
- Electron Gun
- ► ILC Electron Source
- Laser
- Summary

Electron Source Masao Kuriki (Hiroshima/KEK) Contents

Electron Emission (1)

Electron Emission Polarized **Flectron** Flectron Gun ILC Flectron Source Laser Summary

- Thermal electron emission : Electron emission from the heated material (typically 1000 -3000K).
- Field emission: Emission from the high field gradient surface.
- Photo-electron emission: Emission by photoelectron effect.
- Secondary electron emission: Emission induced by electron absorption.

Fermi-Dirac Distribution

Electron Emission Polarized Electron Electron Gun ILC Flectron Source Laser Summary

Electrons in a metal are confined in a well potential and distributed according to Fermi-Dirac Distribution.

- T=0: Electrons occupy the energy states up to Fermilevel (Fermi energy, E_f).
- T>O: Electron distribution extends to higher energy state due to the thermal energy.

Thermal Electron Emission

Electron Emission Polarized Electron Flectron Gun ILC Flectron Source Laser Summary

If the temperature is sufficiently high, so that the electrons are distributed up to the vacuum level (E₀), electrons escape out to the outside.

The gap between the vacuum level and the Fermi energy is Work function, Ø, which characterize the thermal emission.

Richardson-Dushman Equation

Electron Emission	
Polarized Electron	
Electron Gun	
ILC Electron Source	
Laser	
Summary	

$$J = AT^2 e^{-\frac{\phi}{kT}}$$

$$A = \frac{4\pi \, emk^2}{h^3} = 1.20 \times 10^6 [A/m^2 K^2]$$

- A : thermionic emission constant
- ► T: Temperature (K)
- k : Boltzmann constant ; 1.38E-23 (J/K)
- e : electronic charge
- m : electron mass
- h : Plank constant ; 6.63E-34 (Js)

Field Emission

Electron Emission Polarized Flectron Electron Gun ILC Flectron Source Laser Summary

- With large surface field, the potential barrier to the outside becomes very thin.
- When the field is more than 1E+8 V/m, the tunnel current becomes significant.
 - Because of the emission at the cold temperature, it is called sometimes as cold emission.

IC Fowler-Nordheim Formula

Electron Emission Polarized Flectron Flectron Gun ILC Flectron Source Laser Summary

The emission current is expressed by Fowler-Nordheim formula with F, surface field;

$$J = \frac{e^{3} F^{2}}{8 h \pi \phi} \exp(\frac{4 \sqrt{2m}}{3 h e F} \phi^{3/2})$$

The vacuum potential is assumed to be E₀-Fz.
The tunnel current was estimated with WKB approximation.

ic Photo-electron Emission

Electron Emission Polarized Electron Electron Gun ILC Flectron Source Laser Summary

- Photons excite electrons into higher energy states.
- If the states are higher than the vacuum level, the excited electrons are extracted as the photoelectrons; Photo-electron effect.
- Photo-emission condition : $hv \ge \phi$

Electron Emission Polarized Electron Gun ILC Electron Source Laser

Summary

Fowler Equation

P shows the transition probability, Ez is the kinetic energy of electrons in z direction.
Practically, Quantum Efficiency, n, is defined as

 $\eta = \frac{number \ of \ photo \ electrons}{number \ of \ photons}$

with practical units

$$\eta[\%] = 124 \frac{J[nA]}{P[\mu W]\lambda[nm]}$$

Shottky Effect

Electron Emission Polarized Electron Electron Gun ILC Electron Source Laser Summary

İİL

Potential near the surface is modified by the mirror charge potential and surface field

$$V(z) = V_0 - \frac{e^2}{16\pi\epsilon z} - e\,Ez$$

Crest of the potential curve is $V_{max} = V_0 - \frac{e}{2} \sqrt{\frac{eE}{\pi\epsilon}}$

• The effective work function
is
$$\phi(E) = \phi_0 - e \sqrt{\frac{eE}{4\pi\epsilon}}$$

Electron Source Masao Kuriki (Hiroshima/KEK)

20-28 October 2008 3rd International Accelerator School for Linear Colliders

Space Charge Limit

Electron Emission	
Polarized Electron	
Electron Gun	
ILC Electron Source	
Laser	Ca -]
Summary	-

- Electron terminate the electric flux (remember Gauss's law).
- Electric field is weakened by the space charge.
- At some limit, the field at the cathode surface is disappeared and no electrons extracted further; the space charge limit.

Electron Source Masao Kuriki (Hiroshima/KEK) 20-28 October 2008 3rd International Accelerator School for Linear Colliders 12

. Child-Langmuir Law

Electron Emission Polarized Electron Flectron Gun ILC Flectron Source Laser Summary

IIL

- In the space charge limit, the dynamics of the electron cluster decides the electron current, rather than the emission from the cathode.
- In diode geometry two electrodes and one dimension - the current is;

$$J = 2.33 \times 10^{-6} S \frac{V^{3/2}}{d^2} = PV^{3/2}(A)$$

- V and d : voltage and distance between two electrodes.
- S : area size
- **P**: perveance defined as; $P=2.33\times10^{-6}\frac{S}{d^2}(AV^{-3/2})$

Actual Emission Current

- Electron Emission Polarized **Flectron** Flectron Gun ILC Flectron Source Laser Summary
- When the surface field is not sufficiently high, the actual current is determined by the space charge limit.
- When the surface field is sufficiently high, the actual current is determined by that from the cathode.
- Then, the actual emission current form a cathode is

$$I_E = min(I_C, I_{SC})$$

- Ic: Emission current of the fundamental process (thermal emission, etc.)
- Isc: Space charge limit

Polarized Electron (1)

Vacuum

Flectron	Polarized Electron generation:
Emission	3 step model
Polarized	1.Excitation
Electron	2. Transportation
Electron	3. Emission
Gun	Polarization is made by the fir
ILC Electron	step as consequence of selecti
Source	excitation from the valence bo
Laser	to conduction band.
	Excited electron can be
Summary	transported because of the
	forbidden band, band gap.

Step 3 is realized artificial

treatment (NEA surface).

IL

Polarized Electron (2)

Flectron Emission Polarized Electron Electron Gun ILC Flectron Source Laser Summary

 Bulk GaAs (Γ point) has states : J=3/2 and 1/2.
Transition probability by circularity polarized photons(sz=±1) is described by Clebsh -Gordon co-efficients (3/2⊕1 and 1/2⊕1).

If the photon energy is adjusted to excite only J=3/2 states, electron polarization becomes 50% (75% sz=-1,25% sz=+1)

Flectron **Emission** Polarized Electron Electron Gun ILC Flectron Source Laser Summary

If the degenerated states are untied, one transition is enhanced and the polarization can be more than 50%.

Polarized Electron (3)

Constraint (lattice mismatch) or super-lattice (layer structure with different lattice constant) realize the band split.

As consequence, 90% polarization is realized.

Electron Source Masao Kuriki (Hiroshima/KEK)

20-28 October 2008 3rd International Accelerator School for Linear Colliders

Polarized Electron (4)

Flectron **Emission** Polarized Electron Flectron Gun ILC Flectron Source Laser Summary

The polarized electron is excited selectively; The electron is near of the bottom of the conduction band.

Interaction to electrons in the valence band is compensated because any electrons can not be in the band gap: forbidden band.

The polarized electron arrives to the surface.

Polarized Electron (5)

Flectron **Emission** Polarized Electron Flectron Gun ILC Flectron Source Laser Summary

Nominal material has positive electron affinity; Electrons are confined in the well potential.

- The electron affinity can be negative (NEA surface) by two treatments:
 - Band bending: Zn doping makes hole states, which attract unpaired electrons, resulting potential bending.
 - Dipole layer by Cs and O2 pulls down the vacuum level.
- Polarized electron in the conduction band can be extracted to the vacuum.

Polarized Electron (5) CLIC

Electron Source Masao Kuriki (Hiroshima/KEK)

20-28 October 2008 3rd International Accelerator School for Linear Colliders

Electron Gun

Electron Emission		Cathode	Extraction Field	Comments
Polarized Electron	Pierce type (thermionic DC)	Thermal	Static	Still conventional
Electron Gun	Photo Cathode DC Gun	Photo-electron	Static	For special cathode
C Electron	Photo-cathode RF Gun	Photo-electron	RF	Advanced
Laser	Thermionic RF Gun	Thermal	RF	Advanced

Summary

Thermionic DC gun is still conventional, but RF gun becomes recently more popular.

Photo-cathode DC gun is used for special case like Linear Colliders, ERL, etc.

Thermionic Gun

Electron Emission Polarized Electron

Electron Gun

ILC Electron Source

Laser

Summary

- Emission from a thermionic cathode is purely continuous. Grid electrode control the extracted beam.
- The pulse length is limited down to ~1ns.
- Need bunchers to shorten the bunch length for RF acceleration.
- Any thermionic cathodes can not generate polarized electron.

Photo-Cathode RF Gun

Flectron Emission Polarized Electron Electron Gun ILC Flectron Source Laser Summary

111

- Electron beam is generated by photo-electron with laser.
- Typical field: several 10MV/m ~ 150 MV/m, which is impossible in DC gun.
- The beam is accelerated up to several MeVs immediately. The beam bunch length is short; No bunching.
- GaAs cathode has never been used in any RF guns.

Electron Source Masao Kuriki (Hiroshima/KEK)

20-28 October 2008 3rd International Accelerator School for Linear Colliders

Photo-Cathode DC Gun

Electron Emission Polarized Electron

Electron Gun

ILC Electron Source

Laser

Summary

Electron beam is generated by Photoemission with laser.

Beam extraction by a static electric field (100 - 300 kV).

GaAs for polarized electron beam, can be used. It is for ILC.

ILC Electron Source

Masao Kuriki (Hiroshima/KEK)

20-28 October 2008 3rd International Accelerator School for Linear Colliders 25

Requirements

Electron Emission		
Polarized	Parameters	
Electron	Pulse length	0.9ms
Gun	Pulse reputation	5Hz
ILC Electron Source	# of micro bunches in a pulse	2625 (5120)
	Bunch separation	369(189)ns
Laser	Bunch charge	3.2(1.6)nC
Summary	Micro bunch length at source	1ns
	Peak current	3.2(1.6)A
	Electron Polarization	80%

Pulse structure

Electron Source Masao Kuriki (Hiroshima/KEK)

İİL

20-28 October 2008 3rd International Accelerator School for Linear Colliders 27

Basic Concept

Flectron **Emission** Polarized **Flectron** Flectron Gun **ILC** Electron Source Laser

 Circularly polarized photons are injected to NEA GaAS cathode; polarized electrons are generated.
Beam extraction by a

static electric field, 120kV.

Summary

The extraction current is limited up to 3.1A by space charge, 1.1ns for 3.2nC.

Super-lattice Cathode

Electron Emission	
Polarized Electron	
Electron Gun	
ILC Electron Source	
ILC Electron Source Laser	

- GaAs/GaAsP super lattice cathode for high polarization (90%) and high QE (0.5%).
- Surface charge limit: electrons captured at near of the band bending, that raises the effective vacuum states and limit the emission current.
- Heavy P (Zn) -doped GaAs surface layer accelerates the recombination process of the captured electrons to holes; emission is recovered up to $\sim 5A/cm^2$.
- Emission is now limited by space charge.

GaAs Substrate 350 µm

Bunching(1)

Flectron **Emission** Polarized **Flectron** Flectron Gun ILC Flectron Source Laser Summary

- According Child-Langmuir law, peak current of ILC Electron gun (120kV, d~5cm, and 1cm diameter) is ~3A.
- To generate ILC bunch (3.2nC), 1.1ns is necessary.
- It is significantly longer than RF acceleration and should be shorten down to 10ps.
- A special section for this purpose is placed at downstream of Electron gun: Bunching section
 – SHB : 216.7 MHz + 433 Mhz.
 - Buncher : 1.3 G Hz NC tube.

Bunching (2)

Bunch length is 1ns at the exit of Electron gun.

- ▶ RF cavity make velocity modulation within the bunch.
 - Bunch head is decelerated -> slower.
 - Bunch tail is accelerated -> faster.
- By drifting a correct length, the bunch length becomes shorter.
- Acceleration by high gradient RF cavity for the whole bunch, compensates the velocity modulation and the beam becomes rigid.

Energy Compression

- According to a simulation, the energy spread is 2%, which is larger than DR acceptance, 1%.
- Energy compressor by de/acceleration at the dispersive area is added before the DR.
- After the energy compression, the energy spread is 0.5%, which is in tolerance.

Electron Source Masao Kuriki (Hiroshima/KEK)

Flectron

Emission

Polarized

Flectron

Flectron

Gun

ILC Electron

Source

20-28 October 2008 3rd International Accelerator School for Linear Colliders

HV Operation (1)

Flectron **Emission** Polarized **Electron** Flectron Gun **ILC** Electron Source Laser Summary

- Instead of the energy compressor, shorter bunch length in accelerator make the energy spread after acceleration smaller.
- Since the bunch length at the gun exit is determined by the space charge limit, higher voltage operation makes a higher peak current and bunch length can be shorter.
- Short bunch length has merits
 - Simpler bunching section
 - Energy spread after acceleration is smaller and possibly omitting the energy compressor section.
- For higher voltage operation, dark current by field emission from electrode surface should be suppressed.

HV Operation (2)

Electron Source Masao Kuriki (Hiroshima/KEK)

IIL

20-28 October 2008 3rd International Accelerator School for Linear Colliders

HV Operation (3)

Electron Source Masao Kuriki (Hiroshima/KEK)

İİL

20-28 October 2008 3rd International Accelerator School for Linear Colliders 35

Laser for Photo-Cathode

Flectron Emission Polarized **Electron** Flectron Gun ILC Flectron Source Laser Summary

- Laser is one of the most important element of the photo-cathode gun, especially, the ILC electron gun.
- Beam performance is mostly determined by the laser.
 - Temporal structure : 1ns bunch length, 3MHz repetition, 0.9 ms macro pulse.
 - Beam emittance : 10 µrad.
 - Polarization :circular polarization and wave length optimization around 800nm.
- A laser system, which meets fully ILC requirements, is not available commercially.

Flectron **Emission** Polarized Flectron Flectron Gun ILC Flectron Source Laser Summary

Spontaneous mode-locking by Carr effect, bunch length > 17fs .

Ti:Al₂O₃

- Wide band width for lasing (700-1100nm), wave length tune-ability by filtering.
- Require 488nm light for pumping; SH of Nd:YAG/YLF is employed limiting the efficiency from the pumping power to the laser light.

Yb fiber laser

- Double clad-core optical fiber.
- Emission Polarized Flectron

Flectron

Gun

ILC Electron

Source

Laser

Summary

Flectron

- Light from InGaAs LD (940nm) is introduce to 1st clad for pumping.
- Signal propagates in the inner core, where Yb ion is doped, and is amplified by stimulated emission.
 - High efficiency, low-loss, high-power, very stable.

ilr iic

Laser Medium Summary

Electron	Laser Crystal	Ti:Al ₂ 0 ₃	Nd:YAG	Yb:YAG	Yb fbr
Emission	Wave length (nm)	700-1100	1064	1030	1050
Polarized Electron	Wave length tune- ability	Yes	No	No	No
Electron Gun	Luminescence time	3 µs	550 µs	1000	1000
	Pump light (nm)	488	-800	940	940
ILC Electron	Stability	Marginal	Marginal	Good	Excellent
Source Laser	Note	Wavelength is tunable, unstable	CW operation	High stability by LD pumping	Excellent stability by LD pumping, High power
Summary	Feasibility as ILC driver	Feasible, but macro pulse generation is an issue.	Pumping source for Ti:S	Feasible if the wave length can be tunable.	Feasible if the wave length can be tunable.

Laser: ILC Baseline Design (SEAC)

- Ti:Al₂O₃ mode lock + 3MHz pulse picker by Pockels cell makes a pulse train.
- Macro-pulse amplification by Ti:Al₂O₃ crystal pumped by SH of Nd:YAG.
- Wave length is tunable. It is an extension of the existing technology, but the stability could not be adequate.

Yb:YAG fiber laser + OPA

Electron Emission	
Polarized Electron	
Electron Gun	
ILC Electron Source	
Laser	
Summary	

- Yb:YAG mode lock + PP + Yb: fiber laser amp. + NOPA。
- LD pumped-full solid super stable laser.
- Yb fiber laser allows high power up to several kW and high stability.
- Wave length tunability by NOPA.

Electron Source Masao Kuriki (Hiroshima/KEK)

20-28 October 2008 3rd International Accelerator School for Linear Colliders

Parametric Amplification

Flectron **F**mission Polarized Flectron Flectron Gun ILC Flectron Source Laser

Summary

- Wave-length tunability is implemented by Optical Parametric effects.
- ► Harmonic Generation : $\omega \Rightarrow 2\omega$, 3ω , ...
 - Non-linear polarization of atom is induced by focusing laser light in the non-linear crystal (KPD, BBO, etc).
 - If the phase matching condition is satisfied, higher harmonics is emitted from the polarized atoms.
 - Generally, diffraction index is increased by frequency (normal dispersion); the matching condition is satisfied only by material, which has double refraction.

3rd International Accelerator School for Linear Colliders

NOPA*

Electron Source Masao Kuriki (Hiroshima/KEK)

20-28 October 2008 3rd International Accelerator School for Linear Colliders

Summary

Electron Emission Polarized Electron Gun ILC Electron Source Laser

Fundamentals of electro-emission and electron gun are explained.

Polarized electron is generated by photoemission from NEA GaAs cathode with circularly polarized laser.

Laser is an important device, which determine performance of photo-cathode gun.

Summary

ILC electron source is DC bias gun with NEA GaAs.