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Chapter 1  Realization of higher luminosity 

 

1.1  Linac requirements for linear collider  

The luminosity of the linear collider is the key parameter for the success of the experiment. It is 

expressed as, 

(1-1) 

 . 

From this equation, we simply understand that the beam size x and y at the interaction point 

should be small with as large a bunch charge N as possible. If linac RF parameters allow, the number 

of collision should be maximized by increasing the number of bunches nb in a pulse and repetition 

frequency frep.  

In Lecture-I, we targeted higher energy, 

 

(1-2) 

 

with increasing the efficiency from RF power to beam. The luminosity per unit power consumption 

for linac is expressed as, 

 

(1-3) 

 

and it is found important also for luminosity to increase the power transfer efficiency. Here the L0 is 

the luminosity expressed in eq. (1-1) and this is the main issue of this lecture-II. It is to be noted that 

the factor N
2
 is included in L0 so that the larger N gives higher luminosity in the scope of N 

dependence. 

 

1.2 Cares to increase luminosity 

Most important is to preserve through the linac the low emittance of the beam supplied from DR. 

This is the main issue of this lecture. Essentially, it is needed to preserve the 6 dimensional phase 

space of the beam. For the longitudinal emittance, the energy spread should be smaller than the 

acceptance of the final focus optics. For the transverse emittance, it is required to suppress the 

emittance growth within a tolerable level. The tolerable level is usually set such as a few tens of 

percent with respect to the one received from the DR. 

 

1.3 Comparison of two LC parameters 

The typical linac parameters of the two designs, ILC and CLIC, relevant to the present lecture are 
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listed for 500GeV c.m. energy case in the table of the following page. There are huge differences in 

acceleration RF related parameters and beam structure between the two cases, while the beam 

qualities such as emittances of the two cases are close. Following are some of the comparisons 

relevant to this lecture; 

 

Beam emittance;  comparable, 

Beam current;  ILC << CLIC by 100, 

Number of bunches in a train;  ILC > CLIC by 10, 

Bunch spacing w.r.t. RF period;  ILC >> CLIC by 100, 

Bunch length;  ILC >> CLIC by 10, 

RF frequency;  ILC < CLIC by 10, 

Cavity aperture / wavelength;  comparable 

 

These parameters are closely related to the design of the linac and are described in the lecture. 

One of the key differences is the bunch spacing shown in Fig. 1.  In ILC, the spacing w.r.t. RF 

cycle is 468 while that of CLIC only 6. This means the damping requirement for the excited 

electromagnetic field is very stringent in CLIC.  

The bunch length is ten times different. However, the ratio w.r.t. the RF frequency is similar so 

that the beam power spectrum in the unit of RF accelerating frequency is similar. In practice, as the 

bunch power spectrum at 10 times higher frequency than the accelerating mode is still more than 

99% of the zero frequency one, it is high enough comparing to the frequency relevant to the 

component of the linac main parts. Therefore, all the modes and frequency components should be 

taken into account up the cutoff of the beam pipe and even considerably higher than it. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1  Bunch parameters of two examples of linear collider linacs. 



 

 

 

Table of relevant parameters of two LC design 

 

  

Parameters   units ILC(RDR)  CLIC(500)  

Injection / final linac energy
 
 E linac

 
 GeV 25 / 250  / 250  

Acceleration gradient
 
 E a

 
 MV/m 31.5  80  

Beam current  I b A 0.009  2.2  

Peak RF power / cavity  P in
 
 MW 0.294  74  

Initial / final horizontal emittance   x
 
 m 8.4 / 9.4  2 / 3  

Initial / final vertical emittance   y
 
 nm 24 / 34  10 / 40  

RF pulse width  T
p
  s 1565  0.242  

Repetition rate  F rep Hz 5  50  

Number of particles in a bunch  N  109 20  6.8  

Number of bunches / train  N b
 
  2625  354  

Bunch spacing  T b
 
 ns 360  0.5  

Bunch spacing per RF cycle  T b / TRF
 
  468  6  

Frequency F GHz 1.3 12 

Beam phase w.r.t.RF  degree 5 15 

EM mode in cavity   SW TW 

Number of cells in a cavity   9 19 

Cavity beam aperture a/  0.152 0.145 

Bunch length z mm 0.3 0.044 



 

Chapter 2 Emittance dilution and preservation  

 

2.1 Emittance preservation 

Emittance preservation along the linac is one of the key issues 

of the main linac of LC. We should consider principally the 

6-dimensional emittance. It is classified into two categories, the 

longitudinal emittance and the transverse one. The former is the 

energy and position along the bunch. The latter determine the 

transverse dimensions (x,y) while the derivative of these (x’,y’) are 

the phase space component. Present LC’s are designed based on 

the large aspect ratio x/y, and it it usually treated somewhat 

independently, or in other words the coupling between the two 

directions is suppressed. Therefore, the phase spaces (x,x’) and 

(y,y’) are treated independently as long as the coupling between 

the two is kept small. 

From another view point, the emittance is classified into two categories, single bunch emittance 

and multi bunch emittance. The former is the phase space occupied by a single bunch, while the 

latter the projection of all the bunched in a train. If it is not possible to correct the multi bunch phase 

space by any corrector, the projected emittance of the multi bunches is a measure to estimate the 

luminosity. In Fig. 2 are shown the dilution of single bunch emittance in three phases. The left is 

shown the negligibly small emittance, a point-like particle making a betatron oscillation along the 

ellipse. This can be corrected to zero if needed by simple corrector magnet. The center shows a 

coherent tail in the same bunch. Since this shape is still coherent along the bunch, it can be corrected 

by some mechanism depending on the position within a bunch. The right figure shows almost 

incoherent nature and the bunch fills whole phase space so that it cannot be corrected by any means 

once reached this phase. 

 

 

 

 

 

 

 

Fig. 2  Single bunch emittance and dilution. 

 



In Fig. 3 are shown the projection of all the bunches in a multi-bunch emittance space. In the left 

figure is shown the case of all the bunches are moving in the same manner. In this ideal case, the 

multi bunch emittance is equal to that of the single bunch. In the center figure is shown the case with 

slowly varying phase space point. In this regime, each bunches can be corrected back to the nominal 

one by using a bunch-by-bunch fast corrector. If the dilution becomes to the right figure case, each 

bunch cannot be corrected anymore and the whole are in phase space becomes the measure for 

estimating the luminosity. The LC should not be operated in this regime. 

 

 

 

 

 

 

 

 

 

Fig. 3  Multi bunch emittance in phase space. 

 

2.2 FODO optics and betatron oscillation 

The transverse equation of motion is expressed as 

 

(2-1) 

 

where 

(2-2) 

 , 

where g is the field gradient of Q magnet, E electron 

beam energy, and c light velocity. The actual FODO 

optics is schematically shown in Fig. 4. By defining the 

parameters 

 (2-3) 

 

the transfer matrix connecting (x,x’) from point 1 to point 2, 

 

(2-4) 
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is given as below. 

 

(2-5) 

 

Then the transfer matrix from the center of Q magnet to that of the next, 

 

 

becomes 

 

(2-6) 

 

with using Twiss parameters, (, , ). In the thin lens approximation, 

 

(2-7) 

 

And the actual oscillation along the linac, the betatron oscillation, is expressed as 

 

(2-8) 

 

Let us assume (s) constant so that 

 

(2-9) 

 

This becomes in the FODO lattice as 

 

 . (2-10) 

 

Here the betatron wavelength  measures the wave length of the betatron oscillation along the linac. 

The  is the phase advance per FODO cell. If we make the betatron wavelength constant along the 

linac, g should scale as E, energy, while in actual design it typically scales as square root of E. 

It is the issue of this lecture to discuss the emittance dilution and preservation under the system 

guided by this kind of optical system. 

 

2.3 Error sources for emittance dilution 

 
















































CoshSinhk

Sinh
k

Cosh
M

CosSink

Sin
k

Cos
M DF

1

,

1

2/2/ FdriftDdriftFFDF MMMMMM 



















SinCosSin

SinSinCos
M FDF

)1(
/822

,
2

1
222




 
eE

Lgc
SinCos

)(

1
,))(()()(

sds

d
sSinsAzx




 











2

)(

1
,)()( 

s
kskSinzx

)1(
/4

2










 
eE

Lgc

L
k



It is important to suppress any sources of emittance dilution. There are many error sources which 

may increase the emittance.  

If the optical parameters of the linac vary, they change the betatron phase/amplitude and makes 

the mismatch of the Twiss parameters at relevant position along the linac. This results in such as the 

dispersion leakage which makes the position variation of the bunch or bunch train depending on the 

energy spread. The transverse position may cause the emittance dilution. 

If beam passed off axis w.r.t. Q magnets, it generates transverse kick and makes a dispersive 

effect within a bunch or among bunches in a train. To suppress this emittance growth, it is needed to 

measure the beam position and set it to adjust the alignment of the optical components or correct the 

beam to the optical system. To make the beam pass through the center of the Q-magnet, the beam 

position monitor BPM is usually set near the center of the Q-magnet.  

The offset beam w.r.t. accelerating cavity generates the transverse wake field and this wake field 

affects the following particles, in the following bunches in a train or even the particles sitting in the 

same bunch but located at the later part. The wake field is also one of the critical issues to preserve 

the beam emittance, especially in a transverse phase space. The BPM plays an important role to 

adjust the beam position w.r.t. accelerating cavity. The cavity itself can function as BPM. 

The acceleration is performed by RF field in cavities. If the amplitude or phase of this RF varies 

from bunch to bunch or within a train of bunches, it make the energy variation within a bunch or 

among bunches in a train. It also generates the transverse emittance dilution related to the dispersive 

mechanism. Therefore, RF stability is one of the key issues of the linac operation. The energy of the 

bunches in a train suffer from the longitudinal wake field produced by the precedent bunches. This is 

called as beam loading as for the accelerating mode view. This decrease of gain due to the beam 

itself can be compensated by feedback of RF field based on the measured cavity field, or adjusting 

the injection timing of the bunch trains w.r.t. RF field. The loading effect also exists within a bunch 

and it can be compensated by the phase of the RF w.r.t. beam. If not properly done, these errors 

result in the emittance through dispersive effect related to wake field.   

If the accelerator cavity geometry has any asymmetry resulting in a field asymmetry, the 

variation of RF amplitude or phase also affects the beam energy gain depending on the position in a 

bunch. It may dilute the emittance through dispersive effect. The asymmetry comes from cavity tilt, 

asymmetry due to the coupler geometry, book shelf effect of the constituent cells not perpendicular 

to the axis of the structure, etc. 

  



 

3. Wake field and impedance 

 

The wake field and impedance is described in many text books
1
. This lecture covers some of the 

relevant results and some basic ideas for understanding. 

  

3.1 Definition of wake function 

The bunch of the high energy beam carries the 

electromagnetic field with Lorentz contraction as 

shown in Fig. 5.  If such bunch passed through an 

aperture, the field is scattered and the resultant field 

exist around the obstacle as shown in Fig. 6. This 

field is called wake field. 

 The wake field is defined with a schematic 

description shown in Fig. 7. A bunch (red dot), with 

change q1 with offset from the beam axis r1, travels 

ahead of the following bunch (blue dot) with a 

separation of s=ct. Then the field experienced by the 

trailing particle integrated through the cavity or the 

structure is defined as the wake field. The following 

equation expressed this behavior
2
. 

 

 

 

(3-1) 

where p is the momentum kick obtained by the following bunch. The kick in the beam direction is 

called the longitudinal wake field and defined as 

 

(3-2) 

 

while that in the transverse direction is called the transverse wake field as expressed as 

 

 . (3-3) 

 

 

3.2 Panofsky Wenzel theorem  
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Let us derive one of the most basic features of the 

wake field relation called Panofsky Wenzel’s theorem
3
. 

In order to make the derivation easy to understand, let 

us think about the transverse mode shown in Fig. 8. 

Here the mode consists of magnetic field H directing 

upward and the rotational electric field E around the H 

field. In this cross sectional view, the E field is in the 

beam direction. 

From Maxwell’s equation, 

 

 

 (3-4)  

 

If we use the relation  

 

 

 

then the wake field given in (3-3) becomes 

 

(3-5) 

 

Therefore,  

 

 , (3-6) 

 

or in other way, 

 

 . (3-6’) 

 

Using this relationship, we can estimate transverse wake field from the longitudinal wake field. In 

other words, the transverse wake field relates to the longitudinal one through this equation. This is 

how the beam interacts with the transverse wake field if it passed off axis and no wake field if passed 

on axis where no Ez field exists, such as shown in the dipole more field in a pillbox described in 

Lecture-I. 

 

3.3 Multipole expansion 

Fig. 8 
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From Panofsky Wenzel theorem, 

 

(3-7) 

 

For axisymmetric environments, these W can be expanded into multi-poles,  

 

(3-8) 

 

From Maxwell’s equation, form of Wm can be found,  

 

(3-9) 

 

so the wake functions are now expressed as, 

 

(3-10) 

 

 

From these we understand that the wake field near axis exists only m=0 term for longitudinal wake 

and m=1 term for transverse wake. The former is constant over radius, while the latter linear over 

drive bunch offset but constant on witness bunch position. 

 

3.4 Impedance 

The impedance is defined as the Fourier transform of the wake function as below.  

 

(3-11) 

 

(3-12) 

 

Panofsky Wenzel theorem becomes 

 

(3-13) 

 

Since the physical wake field is real, the impedance has the following symmetry. 

 

(3-14) 
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Therefore,  

 

(3-15) 

 

 

Moreover from causality, 

 

(3-16) 

 

 

These are some of the impedance characteristics. Finally, wake function is calculated from only the 

real part of the impedance, 

 

(3-17) 

 

Actual real part of the impedance is 

illustrated as shown in Fig. 6. Here each 

resonance is expressed as  

 

 

 

where the 0 is the resonant frequency of 

the mode. At low frequency region, there 

are isolated trapped modes. Above the 

cutoff off frequency of the beam pipe, the 

power escapes into the beam pipe and the 

resonances are not isolated but overlapped 

and show almost continuous behavior. 

To estimate the wake field for those isolated modes, the representation of the resonant mode is 

useful. For higher frequency case, it is convenient to deal with the wake function directly.  

 

3.5 Loss parameter 

The electric field and the voltage across a cavity are expanded into a series of modes. 

 

(3-18) 
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Here we define the loss parameter. In SW cavity case, it is expressed 

 

 Per a cavity (3-19) 

 

 

 per unit length (3-20) 

 

where Vn represents the voltage across the cavity and Un the stored energy in the cavity, while En the 

electric field and un the stored energy per unit length. For delta-function like point driving particle, 

 

(3-21) 

 

Since the self wake is half of the wake behind the bunch, the energy lost in mode n is expressed as 

 

(3-22) 

For finite bunch length, simply multiply the bunch form factor as 

 

 

(3-23) 

 

And the actual wake is the following convolution 

 

(3-24) 

 

Loss to such as the fundamental mode becomes 

 

(3-25) 

 

That for higher modes is similarly 

 

(3-26) 

 

This estimates all the energy lost in passing a cavity on axis, except for the fundamental one. 

 

3.6 Longitudinal wake function 

If we perform the summation up to some finite number of modes 
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(3-27) 

 

We get the wake function as shown in Fig. 10 taken from the 

Lecture note
4
. This is the estimation of SLAC disk loaded 

accelerator structure geometry. The functional shape should be 

scaled to any frequency as long as the geometry is scaled 

proportionally. The contribution of those higher than the 

frequency, and in high energy limit >>a/c, the optical 

resonator model predicts
5
 the functional form as 

 

 . (3-28) 

 

Adding this contribution makes the estimation of very short 

range wake field as shown with solid line in the figure. In much 

longer time scale, the contribution from the accelerating mode 

dominates, because of the cancellation of higher modes. This is 

shown in the lower figure of Fig. 10. 

 

 

 

3.7 Transverse wake function 

Consider a periodic disk-loaded structure with beam hole aperture radius a. The synchronous 

space harmonic component of the n-th TW mode, axial electric field is expressed as
6
 

 

(3-29) 

 

where E0n is the field at r=a. On the other hand the loss parameter is expressed as 

 

 (3-30) 

 

where rq is the offset of drive bunch. Therefore,  

 

(3-31) 

 

With q the witness bunch charge. Then the wake function can be expressed as 
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(3-32) 

 

If we take Panofsky Wenzel theorem 

 (3-33) 

 

The transverse wake field becomes as 

 

(3-34) 

 

So the following summation 

 

(3-35) 

 

gives the total transverse wake field. Over the maximum frequency m, integration gives wake field 

using 

 

(3-36) 

 

The actually calculated wake field for SLAC disk-loaded structure are shown in three time ranges, 

taken from P. Wilson’s Lecture Note
4
. 

  

 

 

 

 

 

 

 

 

 

 

 

From these figures in Fig. 11, we see that the initial slope is linear, where the fundamental mode 

contribution is very small. The initial bump is determined by about 50 modes. Much longer time 

range, the lowest dominant mode dominates and it is clearly seen at about 4 GHz. 
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Fig. 11  Transverse wake field calculated for SLAC disk loaded structure. 

        Taken form P. Wilson’s Lecture note. 



  The transverse wake function is calculated and parametrized in (a,g,L) parameters by K. Bane
7
. 

Here, the parameters are a=beam hoe aperture, L=cell length and g=L-t, where t=disk thickness. The 

calculation was performed in the X-band linear collider range for NLC, where  

    0.35 < a/L < 0.7 

    0.55 < g/L < 0.9 

The obtained formula is 

 

(3-37) 

 

where Z0 is wave impedance in free space, and 0< s < 0.15 L is the special separation of the witness 

particle behind the driving one. S0 is given from fitting the calculations of the parameter space and 

gives as 

 

  (3-38) 

 

The typical examples are shown in Fig. 

12. The red, green and blue curves 

corresonds to the wake field of the cases 

with a=3mm, 4mm and 5mm. Here the 

L=9mm and g=7mm in all cases. 

  In this figure, strong a dependence is 

clearly shown in addition to the initial 

linear slope. The initial slope is given by 

differentiating eq. (3-37) as 

 

(3-39) 

  

And this slope becomes an important parameters describing the transverse wake field for the beam 

dynamics problems. 
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4. Single-bunch beam dynamics and cures against emittance dilutions 

 

4.1  Beam dynamics under shot range transverse wake field 

Newton’s equation of motion in a transverse plane is expressed by 

 

 , (4-1) 

 

where Fx is the transverse force experienced by the bunch in the transverse direction x. The s is the 

longitudinal coordinate and for the particle travelling with the velocity of light, it is s=ct. The  is the 

Lorentz factor of the particle and m0 the electron rest mass. 

Consider a bunch with its center at s along the linac. The transverse position of the particles 

inside the bunch is expressed as x(s,z), where z is measured from the bunch center. Under the force 

due to the transverse wake field, the equation of motion becomes  

 

 , (4-2) 

 

where the charge distribution of the bunch is expressed as (y) and the wake field by w(y-z), where 

the wake field for a particle at z due to the driving charge at y is expressed as a function of the 

mutual distance, y-z. The second term of the left hand side is the focusing term by the linac optical 

elements. Then, the equation (4-2) becomes 

 

 , (4-3) 

  

where                    is the classical electron radius. 

 

4.2  Two particle model 

Without acceleration, the equation (4-3) becomes 

 

 . (4-4) 

 

Let us assume that the bunch is divided into head and tail with each containing a charge of Ne/2 

separated by 2z. Since there is no wake field for the head particle, the transverse motion of the head 

x1 is expressed as 

 (4-5) 
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The field seen by the tail particle F2 is expressed as 

 

(4-6) 

 

So that the equation becomes 

 

 . (4-7) 

 

This is a forced oscillation with the same frequency as the betatron oscillation. This can easily be 

solved with the functional form 

  (4-8) 

 , 

where the y(s) is a slowly varying function with respect to the betatron oscillation with the wave 

length 2/k. Here the equation for the y(s) is 

 (4-9) 

 

with a solution 

 (4-10) 

 

saying that the tail oscillates at a phase /2 behind. The tail amplitude linearly increases as the 

position s in the linac. 

 

4.3 Chao-Richter-Yao estimation  

A little more sophisticated estimation was performed by Cho-Richter-Yao
8
. Starting with the 

equation (4-4) in a general bunch shape and setting the initial condition as 

 

 , (4-11) 

 

in a weak wake field condition 

 

(4-12) 

 

we can solve the equation with the expression as 

 (4-13) 

 , 

where a(s,z) is a slowly varying function. Inserting this into the eq. (4-4), we get the equation of 
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a(s,z) as 

 

 

(4-14) 

Let us define the wake field as 

 

 

  (4-15) 

Then the equation of motion becomes 

 

 

(4-16)  

with a parameter 

 

 . (4-17) 

 

It has an asymptotic solution as
8
 

 

 . (4-18) 

 

When we take the acceleration into account, we take back to the equation (4-3). We assume slow 

acceleration, 

 

(4-19) 

 

We start with the case of no wake field. In this case, 

 

(4-20) 

 

Again we take the functional form (4-13) and the equation becomes 

 

(4-21) 

 

And this has a solution 

 (4-22) 
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related coordinates. 
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This is equivalent to the adiabatic damping due to the acceleration in z-direction. Now let the wake 

field ON. The equation (4-3) becomes 

 

(4-23) 

 

Let us define now 

 (4-24) 

 

So that the equation of a(s,y) becomes that of b(s,y) as  

 

(4-25) 

 

This is exactly the same form as the equation for a(s,y) in (4-14) except for the varying (s) here. If 

we further take the coordinate s replaced by S as below, 

 (4-26) 

The equation becomes finally 

 

 (4-27) 

 

Which is now exactly the same form as a(s,z) in (4-14). Therefore, we get the same solution in its 

asymptotic form. Consider a constant acceleration, 

 (4-28) 

 

Then S becomes 

 (4-29) 

 

And the solution is expressed as 

 

 (4-30) 

 

Note that the parameter r is now a little different from (4-17). Since Sfinal is expressed as 

 

(4-31) 

 

And the actual amplitude a(s,z) is expressed as 
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 . (4-32) 

 

The functional form is shown in Fig. 14. 

 

 

 

 

 

 

 

 

 

4.4  BNS damping 

Let us start with two particle model form. 

 

(4-33) 

 

If we can vary the tail particle oscillation frequency from that of the head particle as below, 

 

(4-34) 

 

the resonant growth of the second particle should be suppressed. From FODO lattice, the phase 

advance per cell is expressed as (2-7) so that if varies the beam energy , the phase advance varies 

 

 

 

so that 

 

 .       (4-35) 

 

The energy variation within a bunch results in the variation of kas 

 

(4-36) 

 

This suppression mechanism is called BNS damping
9
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In practice, the energy tapering to make the larger focusing force for tail particle can be done 

with lowering the energy toward the tail. It can be produced by setting the bunch in RF slope toward 

the decreasing slope. The longitudinal wake function naturally helps decreased the energy toward the 

tail. 

 

4.5  Auto phasing 

We start with the equation of motion with focusing force variation along the bunch. 

 

(4-37) 

 

If we can vary the focusing force as 

 

(4-38) 

 

then the solution becomes simply 

 

 (4-39) 

 

This is stable and x(s) does not depend on z, which 

means the both head and tail oscillate staying at the 

same oscillation phase as shown in Fig. 15. 

This suppression scheme is called autophasing. The 

slope on k is produced by energy profile inside the 

bunch with amplitude of the order of 

 

(4-40) 

 

The big energy slope needed for this compensation should be compensated at the downstream of 

linac where the beam is stable with higher energy. 
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5. Long range wake field 

 

5.1  Fundamental theorem of beam loading 

Assume a cavity field in phasor diagram focusing 

on one dominant mode as shown in Fig. 16. The 

vector representing cavity field rotates at an 

angular velocity , while the reference frame can 

be set at any definition. We define here with the 

beam arrival time to be =0 as shown in Fig. 17. 

The beam excited field if Vb, which is different 

from the pure decelerating field Ve by an angle . 

When the second bunch enters into the same 

cavity, the phasor relation becomes as in Fig. 18. 

 

 

 

 

 

 

 

 

 

 

The cavity field and energy excited as of the first bunch passage is expressed as 

 

(5-1) 

 

The voltage and energy of the cavity at the second bunch passage are 

 

(5-2) 

 

 

One the other hand, the energy loss of the second bunch is expressed as 

 

(5-3) 

Fig. 16 Phaser representation 

Fig. 17 Beam excited field at the 

injection of the first bunch into an empty 

cavity. 

Fig. 18 beam excited field at 

the second bunch arrival. 
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Since energy loss of the two bunches equals to the stored energy as of the second bunch 

passage, 

 

 . (5-4) 

 

Then the following equation is obtained, 

 

 . (5-5) 

This should be true for any , so that 

 

(5-6) 

 

These states that a bunch excites a cavity with the field in a decelerating direction when 

it passes a cavity, or in other words, it remains the decelerating field in the cavity. The 

passing particle itself feels the half of the excited field by the whole bunch 

 

5.2  Long range wake field in a cavity 

Long-range wake field excited in a cavity is expressed as
10

 

 

(5-7) 

 

where kL is the loss parameter and  is the Q-value related parameter. In typical case with very high 

Q value, =0 and the above equation becomes 

 

(5-8) 

 

(5-9) 

The longitudinal wake field behaves cosine-like. The driving bunch is decelerated and it excites the 

field in the cavity. Even point-like bunch suffers from the wake field, deceleration, with losing 

kinetic energy. On the other hand, the transverse (dipole) wake behaves sine-like. It increases 

linearly in time at very short time, usually within the bunch. Point-like bunch does not suffer from 

the transverse wake field. 

From here we evaluate the loss parameter or R/Q value of the cavity. For the longitudinal mode, 

 

(5-10) 
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while for the transverse mode, 

 

  

(5-11) 

The longitudinal wake function is described as 

 

(5-12) 

 

For  SW cavity case, 

 

 , (5-13) 

 

while in TW cavity, 

 

(5-14) 

 

Here only the space harmonics of n=0 contributes. When we consider the SW case, it is formed with 

superposition of two TW modes, propagating counter direction with each other, so that 

 

 . (5-15) 

 

The field calculated by SW mode is the case with t=0 in the above equation 

 

(5-16) 

 

Therefore, E0 can be evaluated as 

 

 . (5-17) 

 

When we consider the coupling of the beam to the TW mode, the relevant stored energy is only the 

forward wave, which is half of SW case. 

 

(5-18) 

 

(5-19) 
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Then the loss parameter of SW and that of TW are 

 

 . (5-20) 

 

Let us evaluate from now the transverse loss parameter. Transverse field excited by a bunch with 

charge q passing a cavity with transverse position offset of r, 

 

(5-21) 

so that the wake field due to this mode is 

 

(5-22) 

 

This can be expressed in SW and TW cases as follows. For SW case, we estimate using Panofsky 

Wenzel theorem that 

 

(5-23) 

 

If we apply this to eq. (4-62), the wake field becomes 

 

 . (5-24) 

 

The energy of the cavity excited by charge q with offset r is equal to the energy loss if the bunch 

interacting with the field excited by itself, 

 

(5-25) 

 

Where  

(5-26) 

 

If we think the relation 

 

(5-2) 

 

The equation of (5-22) was found proven. This is for SW case. If we think the TW case as in the SW 

case,  
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Therefore,  

 

(5-29) 

 

And this relates between the loss parameter to the R/Q value in the transverse case. 

 

5.3 Frequency scaling of R/Q value 

Now we can estimate the frequency scaling of the parameters as follows; 

 

 Per cavity  Per unit length 

 

   

Longitudinal 

 

 

 

 

 

Transverse 

 

 

 

 

5.4 Calculation of R/Q of transverse mode in a pillbox cavity 

Now, let us calculate the R/Q value of the transverse mode in a pillbox cavity. This is the most basic 

estimation for discussing the transverse dynamics. We calculate here the most typical dipole mode, 

TM1nl, in a pillbox cavity. The most typical and usually largest R/Q mode is TM110 mode. Taking 

the equation obtained in LINAC-I for pillbox modes, 

 

 

 

 

 

 

(5-30) 
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The slope of Ez in r-direction on =0 plane at the beam axis becomes 

 

(5-31) 

 

And the value per cavity becomes 

 

 

(5-32) 

 

 

Then the R/Q per cavity becomes 

 

(5-33) 

 

 

Hereafter, we note some comments on transverse (dipole) mode. Firstly note that TE mode cannot 

couple to beam because of no Ez field. Secondly, there are two polarizations in dipole modes with the 

same field pattern. The frequencies of these modes are almost the same, meaning these are almost 

degenerate. Therefore, it is necessary to separate in frequency for these modes to be stable unless the 

two polarizations can be divided by geometry condition. 
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6. Actual higher order mode examples 

 

6.1 Superconducting nine-cell SW cavity 

 

 

 

 

 

Fig. 19  Nine-cell SCC, superconducting cavity 

 

In Fig. 19 is shown the cross section of the 9-cell superconducting cavity. Here we see that 

1. Nine pillbox-like cells are connected by beam hole 

2. Cells are almost identical, except for the end cells 

3. Beam pipes at both ends are equipped with HOM extraction couplers 

Higher order mode study on this cavity was performed. One of the results, the S21 parameters, the 

transmission from left end plate in beam pipe to the right, are shown in Fig. 20. Since this is 1.3GHz 

cavity for accelerating mode in TM010-like mode, the first HOM passband at 1.7GHz region is 

those of TE11-like mode. In this example, the red curve is the transmission excited from an antenna 

at the left end plane to the antenna at the same angle at the right end plate. In contrast, the blue line is 

the transmission between the antenna at 90 degrees apart between right end and left end. It is seen in 

the first two passband that the blue is lower than red, meaning these are dipole modes. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20  S21 (transmission) spectra of SCC cavity. 
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In Fig. 21 are shown [Left] the schematic dispersion diagram up to very high frequency, [Center] the 

actual modal frequencies, and [Right] the nature of the coupling of the mode to the beam with 

showing those of the first passband. The diameter of the circle shows the degree of coupling. Those 

mode near to the phase velocity vp near light velocity c couple more. 

 

 

 

Fig. 21  9-cell SCC cavity: [Left] dispersion curves (schematic), [Center] actual mode frequencies, 

and [Right] the schematic excitation of the first passband with circles showing the coupling of the to 

the beam with the diameter in the figure.  

 

6.2 Normal conducting TW detuned disk loaded structure 

As an example of the normal conducting cavity, we show the case of X-band disk 

loaded structure (DLS) as shown in Fig. 22. Here, different from SCC case, the cell 

shape along the structure is continuously varying. 

 

 

 

 

 

Fig. 22  Disk loaded structure with varying dimensional parameters. 

 



The dipole mode frequencies are intentionally distributed as shown in [Right] of Fig. 23. This is 

realized by changing the cell parameters, (a,t), the beam hole aperture and disk thickness, along the 

structure as shown in [Left] of the figure. The relationship between (a,t) and dipole mode frequencies 

is shown in the contour plot in [Center] of the same figure. This design is called as “dtuned” as the 

dipole modes are varied to make the detuning effect against the coherent sum up of the dipole wake 

field. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 23  [Right] Actual dipole mode frequency distribution along the structure and [Left] 

parameters to realize it. [Center] the dipole mode frequency contour plot versus geometry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 24  Dispersion of detuned disk loaded structure. 

 



In the Fig. 24 [Left], the dispersion curves are plotted up to very high frequency band. A batch of 6 

passbands attributes to the same band but each representing the cells from upstream to downstream 

of the structure. By changing the design parameters along the structure, the dispersion curves thus 

vary. The coupling to the beam to the first passband is shown schematically in [Right] of the figure. 

The modes shown in dots near light velocity are mostly excited by beam. Fig. 25. This is the 

example of X-band 11.4GHz accelerating mode. The lowest three passbands are clearly seen, the 

lowest accelerator band, the second and the third the dipole modes. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 25  Measured S21 spectrum for the cells near center of structure.  
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7. Ways of calculation of HOM 

 

7.1 Various ways of treating structure geometry 

There are many ways of calculating the multi-cell cavity or structure
11

. Firstly the equivalent 

circuit model
12

 is most popular technique for analyzing coupled resonator system with many-cells. 

This assumes a finite number of modes in each cell and the coupling among adjacent cells and 

between modes. 

Another way is to describe the disk loaded geometry with division at various relevant planes and 

connect between the adjacent areas with the field matching
13

 in between. Typical cases are shown in 

Fig. 26. 

The last way is those of numerical calculation in 2D or in 3D based on finite element method 

such as HFSS
14

 or 2, 3
15

 or finite different method such as MAFIA
16

 and GdfidL
17

. 

 

Fig. 26 Various mode matching techniques. 

 

6.2 An detailed example: open mode expansion technique 

Here we show an example of “open mode expansion” technique
18

 in somewhat detail to discuss 

about the usual technique with using a finite number of modes to describe the whole system. This 

technique is based on the actual modes representing the modes sitting in each constituent cell in 

order to describe the whole coupled resonator system. The structure to be calculated is such as 

shown in Fig. 22. The dispersion curves of the transverse modes for any part of such a structure are 

shown as in Fig. 27. 



 

 

 

 

 

 

 

 

 

 

 

 

In this model, the partition into cells is defined at the middle of the beam hole aperture, where the 

coupling between cells are happening. By doing so, the modes in each cell can be based on fairly 

physical modes, which can be understood physically well. There are various choices for the 

boundary condition at this partition plane. We took the “open” boundary condition, where the 

electric field is parallel to the partition as shown in Fig. 28. However, it is possible, for example, to 

take the “short” boundary condition. Both modes can be complete to describe the whole system 

mathematically. The actual open modes up to the eighth mode are shown in Fig. 29. These modes are 

calculated with numerical solver for several representing cells along the structure to get the 

parameters for the calculation. 

 

 

Fig. 28  Open mode field schematic. 

Fig. 29 Electric fields of actual open modes used for calculation. 

Fig. 27 Dispersion curves of typical DLS. 



Expanding with these open modes ej  

 

 , 

then the eigen value problem becomes 

 

 

 

where X represents the resonant behavior of the mode in each cell and the coupling 

between cells. This can be solved numerically to obtain the eigen solution of the whole 

structure. The result is shown such as shown in Fig. 30. Here each graph shows one of 

the modes with the field pattern decomposing into 8 open modes and the field at the 

location along the structure shown in the horizontal axis. The red numbers are the 

numbering of modes in frequency.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 30 Eigen vector of the model obtained. 
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From this result we can understand the physical nature of the system. In the lower 

frequency modes the fields are localized at the initial part of the structure while the 

location moves toward the downstream side as the modal frequency goes up. It is also 

shown that the lowest two open mode bases are the relevant field and they interact each 

other because they always appear at the similar location. 

The kick factors are calculated from this result summing all the fields along the 

structure for all of the modes. The result is shown in Fig. 31. The resultant wake field is 

calculated by summing the contribution of all the modes based on these kick factors as 

shown in Fig. 32. 

 

 

 

 

 

  

Fig. 31 Kick factors of all the modes. Fig. 32 Calculated wake field. 
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8. Cures against multi-bunch emittance growth by suppression of wakefield 

 

8.1 Cures from structure design 

There are two ways of suppressing the field. One is to align beam to modal axis which suppresses 

the excitation of dipole mode because no Ez field on axis. Another way is to suppress the excited 

wake field. In this chapter we discuss the latter issue. We also focus on transverse mode. The wake 

field of the transverse mode is expressed as 

 

 

 

Here the damping term is expressed as  

 

 ,  where   . 

 

In usual accelerator cavities and structures, the intrinsic Q value, Qwall, is very large. Therefore, it is 

not sufficient to suppress the excited wake field by wall loss of cavities. 

 

 

 

In the ILC SCC cavity, the cavity is equipped with more than two HOM couplers. These HOM 

couplers damp the modes whose field touches to the couplers. This type of damping is established in 

the range of 10
5
. This damping amount is not enough for damping at the next bunch but it contribute 

to the damping among the bunch trains, which is of the order of 10
3
 bunches. For CLIC case, the 

aggressive damping is designed with opening big holes facing at each cell. This opening can reduce 

the Q value down to the order of 10. It means the wake field can be damped by the order of 10 at the 

following bunch. 

Another way to effectively suppress the wake field at much shorter period at the following bunch 

needed for such as CLIC, is the introduction of the frequency spread of the excited modes, 

 

 

 

If the frequency spread f() is large enough of the order of 10% of the frequency, the wake field 

which is the Fourier transform of the kick factor is naturally damp as inversely proportional to the 

frequency spread, resulting in the damping in the order of 10 RF cycles. The basic nature is shown in 

the Fig. 33 in the view point of the cancellation among the modes. Here we assume the kick factor 
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for each mode the same. Actually the density of the kick factor should be distributed well to make 

the wake field characteristics in a better shape in longer period. 

 

 

 

 

 

 

 

 

 

In a sophisticated design of a detuned structure, the distribution of kick factor times the density of 

the mode is designed to be Gaussian
19

. This makes the wake field damping exactly as Gaussian like. 

An example is shown in Fig. 35 for GLC/NLC structure
20

. In this design, it should be noted that the 

wak damping of the order of Q~1000 is implemented by the coupling of the excited modes in the 

accelerator cell to the damping manifold running parallel to the structure. This is shown as the top 

transmission line shown in Fig. 34. The actual shapes of the cell with such manifold are shown in 

Fig. 36. The coupling between cell modes and manifold modes is realized by a thin 

channel which makes the effective Q value of the cell to be ~1000. In the dispersion 

diagram, the coupling appears as the avoided crossing of the dispersion curves which 

appears where any physical interaction exists. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 33 Cancellation of fields in excited modes. 

Fig. 35  Gaussian distribution of k dn/df. 

Fig. 34 Equivalent circuit modeling of 

damped detuned structure. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 36 Actual cell shape with four manifolds running parallel to the beam axis.  

Fig. 37 Dispersion diagram showing the avoided crossing which 

represents the coupling between the lowest mode and manifold mode.  

Fig. 38 Calculated wake field for two cases. DS: detuned structure 

and DDS: damped detuned structure.  



In Fig. 38 are shown the wake fields for two cases; DS detuned structure and DDS damped detuned 

structure. In DS case, the rising of the wake appears at s=10m, which is due to the finite spread of 

the frequency distribution. The final big rise at s~45m is due to the re-coherence of the mode due to 

the finite number of modes available which make the mode-to-mode frequency spacing finite. The 

difficulties mentioned here for DS can be solved by introducing medium damping in DDS scheme. 

The figure clearly shows the damping nature by moderate Q value. 

  The wake field can be measured by such as ASSET
21

 of SLAC. The transverse kick received by 

the witness electron bunch was measured by changing the offset of the preceding driving positron 

bunch. The results are shown in Figs. 39 and 40. The case of Fig. 40 shows the comparison of the 

measured and calculated with practical frequency errors. From these examples, we can conclude that 

the detuning method can practically be applied in a controlled manner. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.2 The DDS structure in practice 

The DDS structure is a series of regular cells with the detuning profile on their cell parameters 

along the structure. In Fig. 41 is shown a typical design example. Manifold is running along the 

structure and it ends with extraction port to outside. The most basic and essential characteristics to 

realize the detuning is to carefully control the dipole mode frequencies. In the example of Fig. 42, 

the frequency of the accelerating mode is controlled by varying the cell radius as the production of 

Fig. 39 Calculated wake field of DDS 

and measured data point shown in solid 

circles. 

Fig. 40 Calculated wake field of DDS 

with a frequency error of 5MHz (top) 

and 12MHz (bottom). 



cells along the structure. In this process, the frequency of the accelerating mode is within 1MHz so 

that the dipole mode frequency error is 1.5 times this value. This means that the frequency control of 

the dipole mode will be within 2MHz, which is usually well below the tolerance of the dipole mode. 

In Fig. 43 shows the measurement of the first dipole, the second dipole and the manifold mode 

along the structure. Eight curves for each passband show those of the cells near input coupler, the 

middle and the last part of the structure. The measurement confirmed the frequency error 

information of the structure. In this structure, the wake field was measured and shown in Fig. 44 

where the calculation is also plotted. The good frequency control made the wake field well meeting 

the design value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 41 The practical design of DDS structure and photos of DDS cells. 
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Fig. 42 Example of the precise frequency control of dipole modes. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 43 Measured spectra of transmission measurement for 6 cells of some part of the 

acceleration structure. 
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Fig. 44 calculated wake field and measured one for RDDS structure where the 

frequencies of the dipole modes are carefully controlled within a few MHz level. 



 

9. Alignment of linac 

 

In this chapter, various methods to align the accelerator structure are described. 

 

9.1 One-to-one alignment 

  If every BPM is aligned perfectly to the magnetic center of each 

quadrupole magnet, it is easy to adjust the beam with respect to 

those magnets by just aligning the beam with zeroing the BPM 

reading. 

  Changing the Q strength makes the change in the transverse kick 

and this change can be measured at the downstream BPM’s to 

know the beam position w.r.t. the Q center where the BPM is 

assumed to be perfectly aligned. 

  It is therefore the most straightforward way but suffers from 

errors in BPM reading and BPM misalignment w.r.t. Q magnet, 

etc.  

There were invented better ways of correcting the beam positions more globally, such as DF or 

WF correction schemes described below.  

 

9.2 Dispersion free steering 

The equation of motion in the transverse plane is expressed similar as in (4-3) 

 

 

 , (9-1) 

 

 

with 

 

 . (9-2) 

 

Here the first term in left hand side is the acceleration in the transverse plane, the second term the 

focusing term from the linac optics with the variation of focusing effect depending on the energy 

variation  and the position measured w.r.t. he Q magnet center xq. The first term in the right hand 

side is the kick by steering elements and the second term from wake field effect. The wake field is 

given as the offset from the structure alignment xa. 

Fig. 45 Zeroing the 

BPM reading. 
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Let us assume the beam to be 

consisted of two parts as shown in Fig. 

46. The left figure represents the 

uncorrelated energy spread, meaning 

that the energy spread exists even at the 

same position of the bunch. This 

situation can be written in the difference 

orbit of the second part with respect to 

the first part as 

 

 .        (9-3) 

 

On the other hand, the correlated energy spread is shown in the right figure case. Here the difference 

orbit is written as 

 

 . (9-4) 

 

This case represents the bunch energy varies along the position z within the bunch. 

  In case of no wake field, the equation (9-2) can be written as 

 

(9-5) 

 . 

 

Each term in the right hand side represents 1. the steering and 2. the orbit offset at the Q magnet. 

If the wake field ON, it is expressed as 

 

 

(9-6) 

 

 

 

The first two terms in the right hand side represents the same as in (9-5) while the last term 

represents 3. the wake field effect. These two equations are the basic for the DF and DW steering 

scheme. 

Fig. 46 [Left] correlated energy spread 

and [Right] uncorrelated energy 

spread. 
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  In the first order approximation, the solutions for these are written as the transferred position 

originated from the kick at s’ upstream. Without wake field,  

 

(9-7) 

 

The minimization of xd is equivalent to locally minimize the following value, 

 

 , (9-8) 

 

where the right hand side expresses the cancellation of the effect due to the Q-magnet misalignment 

by local correction. In practice, from the i’th BPM reading mi and its difference mi with their 

predicted values, xi and xi minimization does dispersion free correction trying to minimize the 

following value, 

 

 , (9-9) 

 

where prec and BPM are the precision of the BPM reading and the resolution of the BPM reading.  

 

9.3 Wakefield free steering 

Similar approach is applied for the case with the wake field. In the first order approximation, 

the solutions for these are written as the transferred position originated from the kick at s’ upstream 

 

 

(9-10) 

 

 

The minimization of xw is equivalent to locally minimize the following value, 

 

 

 

 

(9-11) 

where the three terms in the right hand side are those from 1: misalignment of the Q-magnet, 2: 

wake field correction, and 3: structure misalignment. Wake field term cannot be cancelled out by  

term because of constant Wt while alternating nature in K(s’). However, if we take only QF or only 

QD, then the correction of Wt can be realized. In practice, from the i’th BPM reading mi and its 
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difference mi with their predicted values, xi and xi, the minimization does wake field free 

correction; 

 

  (9-12) 

 , 

 

where the xi
QF

 and xi
QD

 are those difference orbit due to the variation of only QF or QD. The 

correction example is shown in the reference
22

. The result is shown in the table below. 

 

Method  


y 
 

Trajectory  rms  

1-to-1  
23 

y0 
 

72 m  

DF  
9 

y0
  

55 m  

WF  
1 

y0
  

44 m  

  

9.4 Alignment with using excited field in the accelerator structure 

  If we measure dipole mode in a structure, we can estimate the position of beam which excites the 

mode. The coupling of the mode to the beam transverse position is linear. If the modal frequency 

depends on the position of the mode, as discussed in section 6-2 or 8-2, it can distinguish the beam 

position by filtering the excited field in frequency.  

In such a cavity as ILC, it can be done with using the power from HOM couplers. In such cavity 

as CLIC, it can be done with extracted power from manifold or damping waveguide. Both directions 

x and y are measured with distinguishing two modes in different polarizations, almost degenerate but 

with some frequency difference unless distinguished by other means.  

In Fig. 47 are shown the power and the phase of the excited field. As shown in the figure, the 

power is quadratically vary as the beam transverse offset, which is consistent to the linear coupling 

of the beam to the transverse mode. The phase changes the sign when the beam crosses across the 

axis and this behavior can be utilized to know which direction the beam is offset. The actual position 

of the beam with respect to the modal center was measured in one of the DDS structure. The result is 

shown in Fig. 48. It was found that the structure bending was confirmed with beam in the order of a 

few micron level. The method will be the very basic alignment tool for the linear collider application 
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which needs tight alignment tolerance. Especially the ILC case with the SCC cavities located in the 

vessel 
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Fig. 47 [Left] Power excited by beam and [Right] Phase of the excited field. 

Fig. 48 Accelerator bending [dots] measured by beam and [line] by 

coordinate measurement machine. 



 

10. More for LC not mentioned yet 

 

10.1 Dark current issue 

  Dark current is a stable emission of electrons under high field. The DC field emission leading to 

the dark current is the tunneling feature of electron migration near surface. It is studied by 

Fowler-Northeim
23

 and the current is expressed as below.  

 

(10-1) 

 

 

Here work function and field enhancement factor play important roles. Actually the field E0 is 

replaced by the local field  E0. The  is the work function of the surface. This DC current form can 

be extended to the alternating RF field as derived by J. Wang and G. Loew
24

 as 

 

 

(10-2) 

 

This dark current exists in an RF field, whether or not in SW and TW or in NCC and SCC. 

  If such dark current exists, the electrons will be accelerated by the accelerating field and hit the 

cavity surface and deposit energy locally. It may lead to the quenching of superconducting material 

or the collision with material may produce secondary electrons to be mass-produced iteratively. Such 

accelerated current will hit other places and may cause the misreading of the downstream BPM. 

Most of the electrons thus extracted are usually defocused by the strong Q magnetic field so that it 

cannot travel for a long distance. However, the electrons can be trapped in the RF field and can be 

accelerated to a fairly high energy before reaching to such defocusing devices. 

  There are many numerical simulations of the dark current in the structure. However, a simple 

analytical estimate gives the basic characteristics of the capture mechanism in the linac
25

. Below we 

describe such mechanism and derive the minimum threshold field for such capture mechanism. The 

acceleration field is expressed as the summation of all space harmonics in the periodic structure as 

below. 

 

 

(10-3) 
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(10-4) 

 

 

The acceleration can be performed along a finite distance with the phase slip . If, p~, then  is 

slowly varying function. Therefore, only n=0 becomes dominant for acceleration. 

 

(10-5) 

 

Finally, by combining (10-4) and (10-5),  

 

 . (10-6) 

 

The plot of the contour of this equation is shown in Fig. 49. Here the momentum p relates to the 

energy of electrons as 

 

 

In the structure with slow phase velocity such as p=0.5, the electrons oscillate as shown in the left 

figure. If p=1 then A=Cos(m) when approaching at p infinity and the phase freezes and the 

electrons are accelerated to very high energy without phase slip any more, as shown in the red 

arrows. 

 

(10-7) 

 

 

 

 

 

 

 

 

 

 

 

 

The minimum field 0 for being tramped, equivalent to being maximum in left-hand side, 
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For zero-energy electron, p=0, to be captured, the minimum field becomes 

 

(10-8) 

 

which results in Eacc=7 MV/m at 1.3GHz for ILC and Eacc=61 MV/m at 11.424GHz for CLIC. It its 

to be noted that in both cases the design accelerator gradients are higher than this trap threshold. 

 

10.2 Tolerable trip rate 

Before closing this lecture, we discuss one of the important requirements for obtaining the high 

integrated luminosity. For this purpose, it is important to keep the instantaneous luminosity high. 

Once some failure happens in some cavity, the power feeding the cavity or the bunch of cavities is 

shut off. Then, the power or pulse width will be recovered taking some number of pulses starting 

from a little lower power level. During this period, the cavities in recovering mode are off in timing 

from acceleration for the linac if being powered by independent power supply. In such a system as 

CLIC two beam scheme, the off-timing operation cannot be applied and gradual power recovery is 

needed. During this recovery period, other cavities than nominal should be used to keep the beam 

energy. Therefore, linac needs extra acceleration capability than the nominal one. These extra spare 

cavities or the extra power/gradient capability is required. 

Let us assume the compensation with spare cavities shown with red line in the figure below. 

 

 

 

 

The number of failures during the recovery time for a cavity is expressed as 

 

 , (10-9) 

 

where Rfail is the failure rate for a cavity, 1 trip per N pulses, Trec the recovery time in the unit of 

pulses, Nstr and Nunit the number of unit per linac. This number should be less than the number of 

spare units. 
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Let us assume an example below. 

 

 

 

 

 

In this case,  

 

(1-12) 

so that we understand that the tolerable rate is of the order of 1 trip / million pulses or less. 

   The failure rate should be decreased or the accelerating gradient margin should be increases to 

stably keep the luminosity. For the ILC SCC cavity, it is needed to increase the quench field level by 

improving cavity itself, to suppress the field emission dark current by surface improvement, to 

increase Q0 and to make the life of the tuning system long. In the NCC cavity, it is essential to 

reduce the breakdown rate. The trigger mechanism of the breakdown is not well understood yet, but 

possible source of trigger to breakdown should be minimized. Some of them are such as the surface 

chemical quality, dusts on surface, micro protrusions and the temperature rise within a pulse called 

as pulse heating. The last is not least important. The pulse heating is the surface energy deposit 

within pulse duration, which diffuses as the heat diffusion in the material body. This phenomenon is 

shown in the figure below. 

The surface temperature rise is written
26

 as 

 

(10-13) 

 

where Hs is the surface magnetic field, Tp the 

pulse width, d the diffusion constant,  density 

of material, c specific heat. In copper case, T 

becomes as high as 270degC.  

The surface heating at the very surface make the 

stress too large and the crystal boundary may 

suffer from the cracking and so on such as shown 

in Fig. 50
27

. It can be speculated that such 

cracks may result in the trigger source of 
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Fig. 50  Pulse surface heating. 



breakdowns. Therefoe, such high surface 

temperature should be suppressed. 

 

 

 

 

 

 

 

  In Fig. 51 is shown the magnetic field distribution 

around the DDS cells. There are multiple places where the 

magnetic field is enhanced so that these are should 

carefully be designed and fabricated to suppress the excess 

magnetic field. The electric field may also be enhanced if 

any burrs and scratches exist on high electric field area.  

The care to be burr free, micro-protrusion free, and particle free on surface is also an issue to be 

considered not only the SCC cavity but also for NCC cavities. 

 

10.3 Summary of LINAC-II 

  By keeping the emittance growth within a tolerable level, the luminosity will be kept high. 

Various sources, especially those of wake-field origin, were discussed. Then the cures of HOM 

origin are discussed in detail. Cares on alignment to suppress single-bunch wake field was discussed, 

using structure BPM and BBA.  

These perturbations and cures are almost the same in general in both warm linac and cold one and 

should be carefully designed and realized to keep the high luminosity.

Fig. 52 Cracking on copper surface. 

Fig. 51 Surface magnetic field. 
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