

CHEF: Recent Activity

Observations about Dispersion in Linacs

Jean-Francois Ostiguy FNAL

What is "CHEF"?

- A framework for beam dynamics simulations consisting of a set of libaries organized hierarchically + python bindings + a standalone application
 - Written in "modern" C++ (use STL and templates extensively)
 - Originally not written specifically with Linacs in mind.
 - Most C++ compiled functions are available from Python.
 - Main advantages: Python is absolutely free and in widespread use
- Originally designed for proton rings and beamlines; subsequently adapted for high energy linacs

•

- The code provides facilities for both conventional tracking and map computions using automatic differentiation.
 The same generic code is used for both functions.
- From time to time, features have to be implemented to accommodate special needs. Since most simulation codes are dominated by "bookkeeping"; the philosophy was to make the "bookeeping" as generic as possible to and minimize need for "re-invention" or duplication.
- Some Distinctive Features
 - No paraxial approximation
 - Can accurately accommodate large dp/p
 - Internally uses 6D canonical variables (rather than optical) variables
 - No inherent relativistic (beta ~ 1) approximation
 - In principle, can track phase space "patches" using DA variables.

Some Other Features

A browser to study the lattice and its hierarchical organization (full support for XSIF format)

User-friendly optics computations and display capabilities.
Traditional (uncoupled) or generalized (coupled) lattice functions.

Status

- Starting early 2008, following budget problems,
 CHEF LC specific code development slowed down significantly.
- Earlier LET work had shown good to fair agreement between CHEF and other codes, but some differences remained.
- We are in the process of running a series of systematic, basic tests to understand these differences.

Some Sample Tests

- Assumptions (tests 1a,1b, 2a,2b)
- nominal dp/p = 0.0107
- All tests assume a "straight" linac (to avoid emittance correction issues)
- No girder misalignments
- No BPM misalignments

Test No 1- One Misaligned Quad

Lucretia

CHEF

Test No 1 – Vertical Emittance

Test 1a: ϵ_y (with acceleration)

Test 2: a single corrector @ 1.0-3 Tm

Test 2: emittance

Lucretia

CHEF

Test 2a (with acceleration)

Test 2a (Acceleration ON)

Lucretia

CHEF

Test 3 – DFS Corrected Straigth Linac -Trajectory

Misaligned Quads, Cavities + DFS Corrector settings Agreement is excellent.

Test 3: DFS Corrected Straigth Linac Emittance Profile

Close - but nevertheless we observe some discrepancies It is not clear yet what the source is.

Linac Dispersion

- In a ring, dispersive correction to the trajectory is fully defined by dp/p i.e. dx = eta*dp/p
- In a linac, the dispersion function depends on initial conditions.
- In a linac, magnet strength is scaled so as to make the (quadrupole) optical strength constant for the reference particle
- For a given particle, dp/p is not constant during acceleration.

Observations

- In comparing linac dispersion with other codes we observe some differences—when acceleration is present.
- Since dp/p scales like ~p/p0, linac dispersion often defined as
- $[x(p0+dp0) x(p0)]/(dp/p)_0 * [p/p0]$
- Periodic dispersion is very sensitive to deviations in optical periodicity.
- In applying the DFS algorithm to a curved linac, the nominal "dispersion" is subtracted out in the quadratic objective function. The optimum corrector settings depends somewhat on which "dispersion" is used.

17

How CHEF computes dispersion

- A reference particle is sent through the linac and the magnet field are scaled so as to make the optical strengths constant for that particle.
- Method 1: A "JetParticle is tracked through the linac. A
 JetParticle propagates the derivative of y w/r to dp/p to
 machine precision. The result is scaled by p/p0
- Method2: 2 particles with momentum p and p+dp are tracked through the linac. The results is scaled by
- p/p0.
- Method3: Same as 2, but this time, the acceleration gradient is modified by a factor 1+dp/p so as to make dp/p constant.

Dispersion (MADacc)

No Acceleration

With Acceleration

Linac Dispersion

Without Acceleration

With Acceleration Notice slow amplitude drift ..

Conclusions

- Agreement between CHEF and Lucretia is generally quite good; nevertheless, some unexplained discrepancies remain.
- Predicted dispersion with acceleration exhibits a weak amplitude drift ... is this real and/or what causes that ?
- Although the manpower dedicated to this effort has been scaled back since last december, development of CHEF continues.
- For HE linacs, we intend to focus on improving the cavity representation to include asymmetric wakes (e.g RF coupler).
- Lucretia and Placet are also in regular use at FNAL; we plan to continue using - and possibly to improve - these codes and cross-check with them (A. Latina + A. Saini (GS))
- Access to > 1 code is invaluable, in particular to uncover bugs and to understand the impact of approximations which may not always be fully appreciated.