ILC Cooling System

VE and Design Status at KEK

Atsushi Enomoto (KEK)

ILC GDE Meeting
17 November 2008, UIC (Chicago)

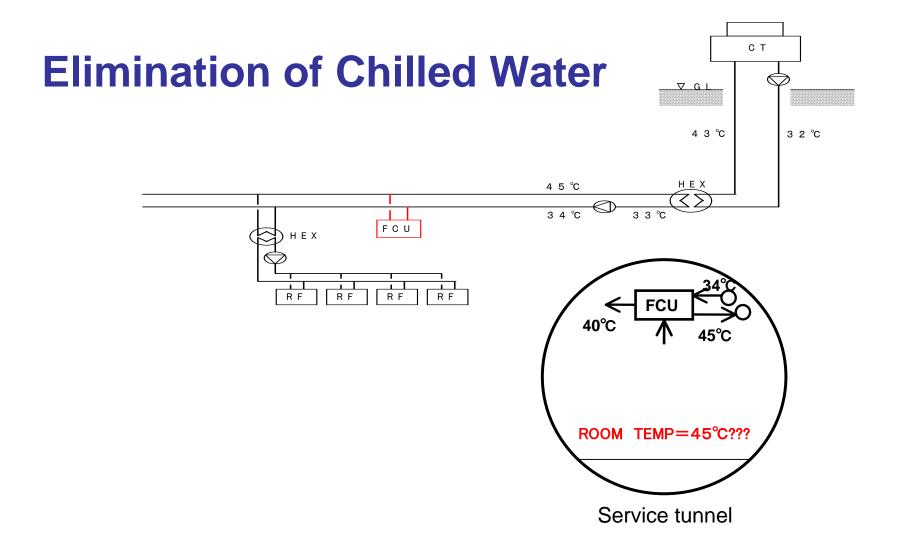
From Dubna to this meeting

Dubna

- 1. Preliminary evaluation of $\Delta T = 20$ deg.C
- 2. Pick up of alternative HVAC scheme

This meeting

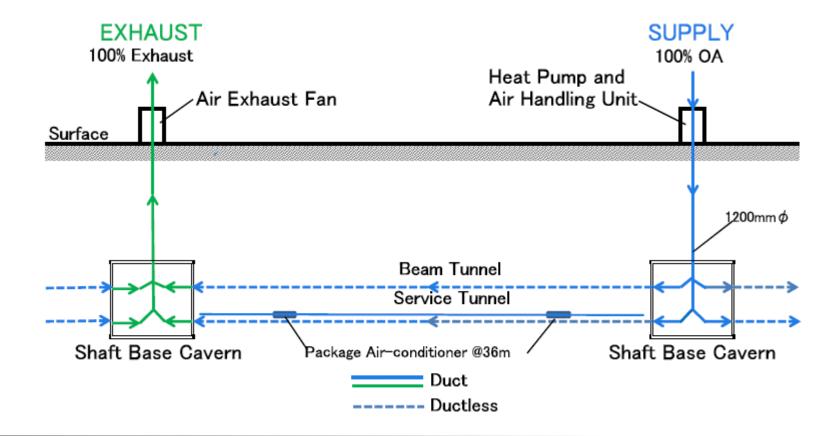
- 1. Evaluation of *△T* 10, 20, 30 deg.C
- 2. Evaluation of three different alternatives for HVAC



Previous preliminary evaluations (at Dubna)

COST COMPARISON OF AT 11°C & 20°C @ #7

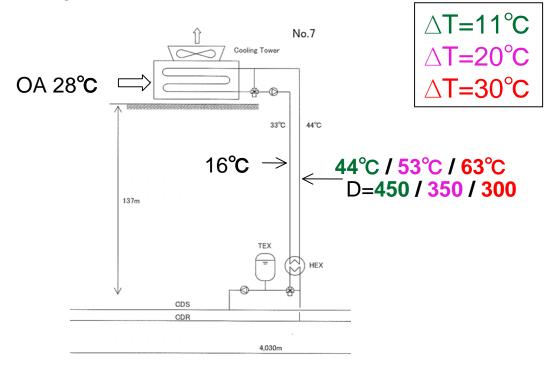
			(Provisional Direct Cost)		K¥
			Work Items	∆T 11°C	∆T 20°C
1752			Primary Stations		
	17521		Cooling Tower and Pump Station		
		175211	Cooling towers for process water		
		175213	Tower pump for process water		
		175216	Controls		
	17522		Primary Stations and Piping		
1753					
	17531		LCW Stations and Distribution		
		175311	LCW pump/skid system		
	17535		Process Water Distribution		
		175351	Heat exchangers		
		175352	Distribution pump		
		175353 175354	Piping		
		175355	Piping connections etc.		
	Total o	of Releva	nt Items		
-				-	92.90%


7% cost saving expected by increasing $\Delta T =$ from 11 to 20 deg.C

Without chilled water to FCU, temperature of the service tunnel might rise to 45 $^{\circ}$ C

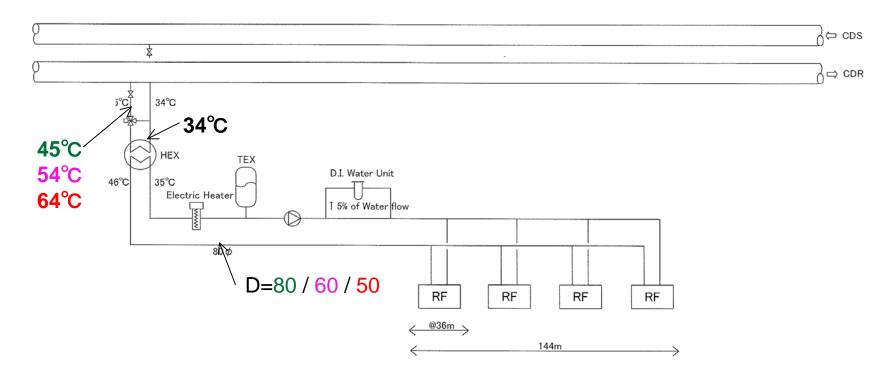
Alternative HVAC scheme for tunnels

- supply & exhaust @ every other shafts
- package air-conditionaer at every 36 m



Studies after Dubna

- Process Cooling Water System
 - Elimination of chilled water
 - Increase of △Ts from 11°C to 20°C & 30°C
- HVAC System
 - Tunnel temperature without Chiller
 - Alternative air-conditioning system


Process Cooling Water System

Primary Station

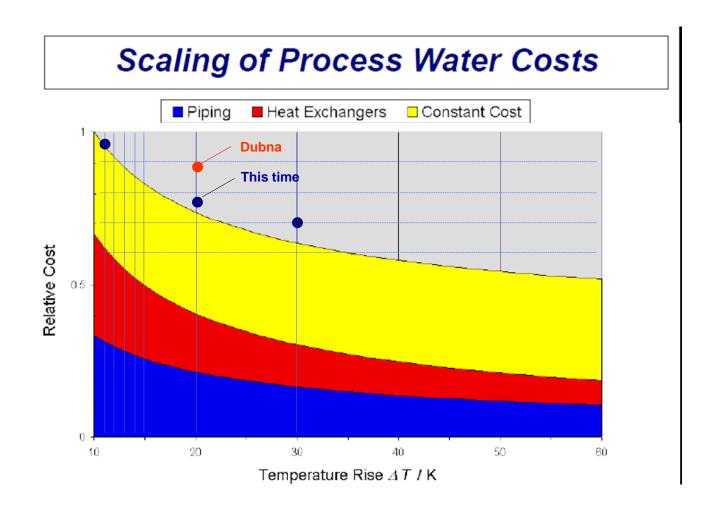
Elimination of chilled water and increase of △T

Secondary Station

Cost Estimation done by Consul.

	$\neg - \models$		工事名	内容-仕機	定價(干円	() 掛率	単価	(千円)	金額(千円)	計(千円)		
752			一次冷却水投稿									
	17521		冷却塔およびボンブ									
		175211	冷却语	密開式空冷冷却塔 冷却禁量15,000kW、63/33°C、外気26°CDB	1	台						
		175213	冷却塔ボンブ・付属品	冷却水ポンプ 3,600L/min×30m, 防液装置	2	台						
		175216	初御装置	冷却塔強り制御	1	式						
	17522		一次設備・配管									
		175222	冷却塔配管(地上)	据管300φ(屋外仕様)	50	m						
		175224	冷却塔配管(シャフト)	顕管300φ(屋内一般仕様)	274	m						
			配管支持架台地	@3mピッチ	04	個						
753			二次冷却水投像									
1750	17531		脱塩水装置及び配管									
		175311	脱塩水スキッド	プレート型勢交換器 交換熱量450kW	26	台						
				冷却水ポンプ 220L/min×30m、SJS製、防接装質	26	늄						
				純水装置	26	tt						
				電気ヒータ	26	台						
				際様タンク	26	th						
				ステンレス鋼管50φ(屋内一般仕様)	4030	m						
	[ステンレス鋼管40点(屋内一般仕様)	4030	m						
				バルブ スウェジロック 30 か	208	193						
L				自動制御	26	式						
	17534		圧纏空気									
		175341	压缩变氮	空冷オイルフリーコンプレッサ165L/min、ドライヤ内臓、空気槽、フィルタ	26	숨						
				ステンレス類皆20点(歴内一般仕様)	4030	m						
				バルブ スウェジロック (3.6	104	ਿ						
	17535		冷却水配水									
		175351	熱交換器(地下空洞)	プレート型熱交換器 交換熱量5000kW	3	台						

Done based on makers' current estimations and summed according to WBS items in RDR.



Cost Comparison by ΔT

Cost for shaft #7 (Conversion rate used in RDR)

		(w/o. Chilled water system)	△T=11°C	△ <i>T=20°C</i>	△ <i>T=30°</i> C
1752		Primary Stations		<u>'</u>	
	17521	Cooling tower & pump			
	17522	Tower piping			
1753		Secondary Stations			
	17531	LCW Stations & distributions			
	17534	Compressed air			
	17535	Process water distribution			
		Total		I	
			100	81	73

VE Results on *△T*

Air-conditioning system for tunnel

$$K_L = \frac{q}{l(t_w - t_0)} \quad l : \text{length of pipe,} \quad t_w : \text{temperatur e of water in the pipe}$$

$$t_0 : \text{temperatur e of outside of the pipe}$$

$$\frac{l(t_w - t_0)}{q} = \frac{1}{2\pi} \left\{ \frac{1}{\alpha_w d_0} + \frac{\log_e \left(d_1 / d_0 \right)}{\lambda_1} + \frac{\log_e \left(d_2 / d_1 \right)}{\lambda_1} \right\} \quad l = 1m$$

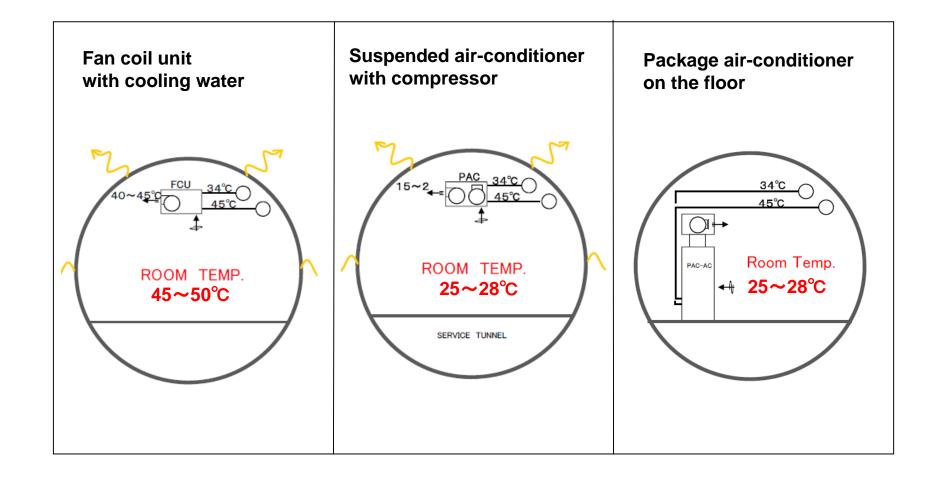
$$q = \frac{21,4 \, kw \times 1000}{36 \, m} \approx 600 \, w / m$$

$$\alpha_w = 6 \, w / m^2 \, K \quad \alpha_w :$$

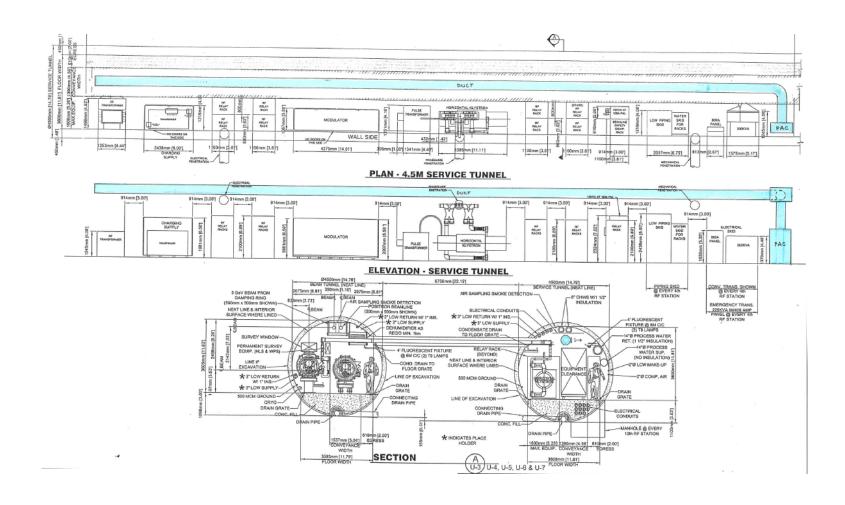
$$d_o = 2.5 \, m \quad d_0 : \text{inside radius of the pipe}$$

$$d_1 = 3 \, m \quad d_1 : \text{outside radius of the pipe}$$

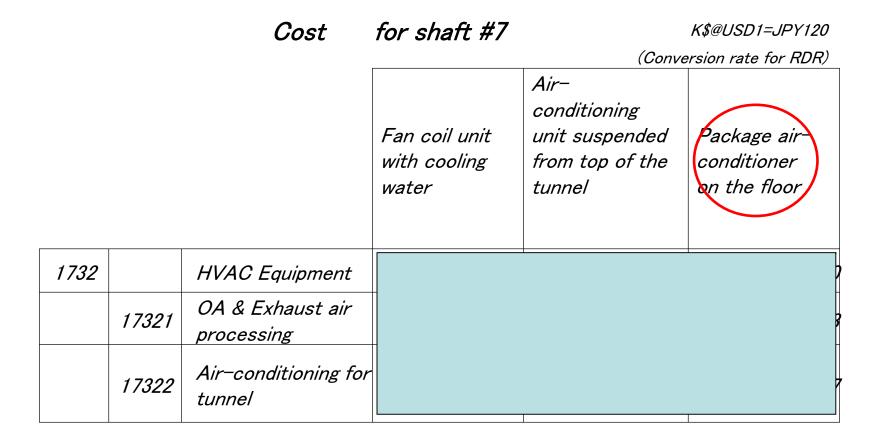
$$d_2 = 10 \, m \quad d_2 : \text{radius of insulated pipe}$$


$$t_0 = 10 \, ^{\circ}C$$

$$\frac{t_w - 10}{600} = \frac{1}{2\pi} \left\{ \frac{1}{6 \times 2.5} + \frac{\log_e 3.0 / 2.5}{1.4} + \frac{\log_e 10 / 3.0}{3.1} \right\}$$


$$t_w = \frac{600}{2 \times 3.14} \left\{ \frac{1}{6 \times 2.5} + \frac{0.18}{1.4} + \frac{1.2}{3.1} \right\} + 10 = 65.6 \, ^{\circ}C$$

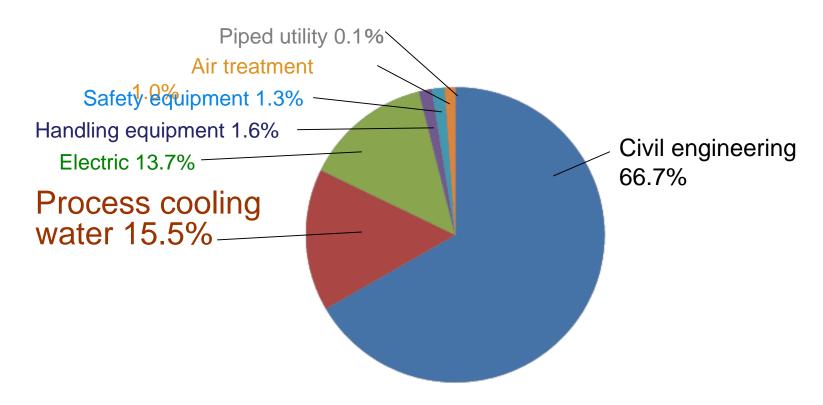
Without air-conditioning, temperature in the Service Tunnel will become 65.6 °C.


Measures to improve tunnel ambience

Layout of Package Air-conditioner & Duct

Cost Comparison

Conclusion


- (1) VE on △T of process cooling water was investigated with cost estimation by consultant.
- (2) Higher △*Ts* certainly reduce cost. The highest limit will be given by heat load operation spec. of RF equipment.
- (3) Local package air-conditioner scheme seems effective in cost reduction.

APPENDIX

- (0) Cost profile
- (1) Heat loads
- (2) Heat diffusion
- (3) Suppress heat diffusion
- (4) Surface and underground temperature

Priority of study on process cooling water

Proportion of process cooling water in total infrastructure (excl. survey)

Focus on - Shaft #7 Area -

Geometry of Facility

Cooling Tower building ~700 m2

Shaft 14 mφ, 137 m (450 ft) depth

Cavern 16 m(W), 18 m(H), 49 m(L)

Tunnel 4.5 m ϕ , ~4030 m (1550 + 2480)

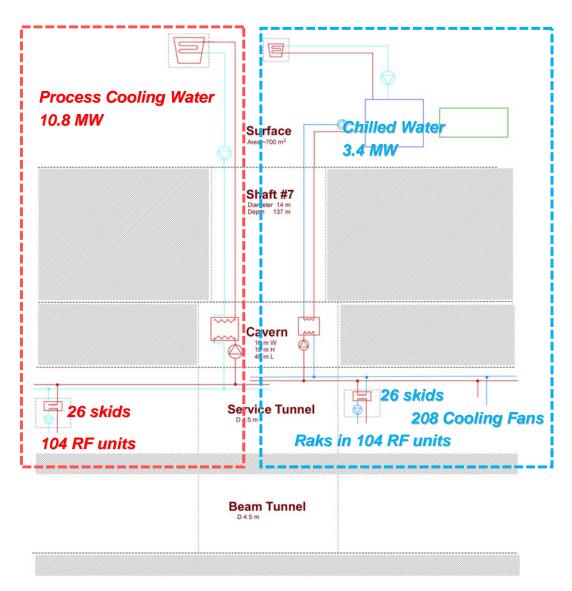
RF Unit Heat Loads

To Low-Conductivity Water 104 kW
To Chilled Water 21.2 kW

Rack 11.5 kW

Service Tunnel Air 9.7 kW

To Beam Tunnel Air 5.9 kW

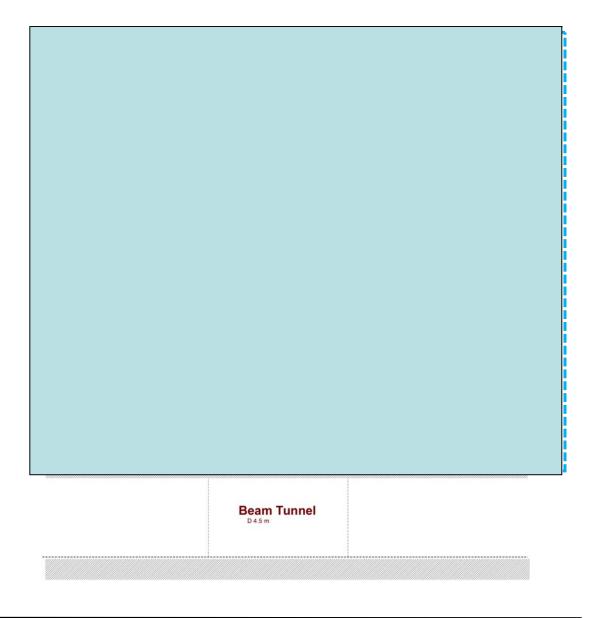

Shaft #7 Total Heat Loads

Number of RF units 104

Low-Conductivity Water 10.8 MW

Chilled Water 3.4 MW

(Air2.2+Rack1.2)



Cost Profile

ML cooling system cost is ~half of total area

Process Cooling Water piping cost is expensive, including high percentage of LCW skids system (37%)

Low cost performance of Chilled water system

Dec 14 2007

WATER AND AIR HEAT LOAD (all LCW) and 9-8-9 ML

Top-5 heat loads to Air/ChW

MAIN LINAC - ELECTRON & POSITRON								
					To Low Conductivit y Water	to Chilled Water		load to Air 22 об
							Power	
			Total	Average	Heat	Heat	fraction	
			Heat	Heat	Load to	Load to	to	Powert
	Quantity		Load	Load	Water	Water	Tunnel	Tunnel
Components	Per 36m	Location	(KW)	(KW)	(KW)	(KW)	Air (0-1)	Air (KW
Non-RF Components								
LCW Skid Pump 1 per 4 rf -Motor/Feeder Loss	0.25	Service Tunnel	0.60	0.60	0	0	1.00	0.50
I^2R Loss and Motor Loss (misc)	1	Service Tunnel	8.99	8.22	0	0	1.00	8.22
Fancoils (5 ton Chilled Water) 1.5 Hp	2	Service Tunnel	2.91	2.91	0	0		
Rack Water Skid	0.25	Service Tunnel	0.20	0.20	0	0	1.00	0.20
Lighting Heat Dissipation ~1.3W/sf		Service Tunnel	1.65	1.65	0	0	1.00	1.65
AC Pwr Transformer 34.548 kV	0.25	Service Tunnel	2.00	2.00	1.50	0	0.25	0.50
Emerg. AC Pwr Transformer 34.548 kV		Service Tunnel	1.00	1.00	0	0	1.00	1.00
RF Components								
RF Charging Supply 34.5 Kv AC-8KV DC	1/36 m	Service Tunnel	4.0	4.0	2.8	0	0.3	1.2
Switching power supply 4kV 50kW	1/36 m	Service Tunnel	7.5	7.5	4.5	0	0.4	3.0
Modulator	1/36 m	Service Tunnel	7.5	7.5	4.5	0	0.4	3.0
Pulse Transformer	1/36 m	Service Tunnel	1.0	1.0	0.7	0	0.3	0.3
Klystron Socket Tank / Gun	1/36 m	Service Tunnel	1.0	1.0	0.8	0	0.2	0.2
Klystron Focusing Coil (Solenoid)	1/36 m	Service Tunnel		4.0	5.5	0	0.1	0.4
Klystron Collector	1/36 m	Service Tunnel	58.9		45.8	0		
Klystron Body & Windows	1/36 m	Service Tunnel	50.9	47.2	4.2	٥	0.0	1.4
Relay Racks (Instrument Racks)	1/36 m	Service Tunnel	10.0	10.0	0	11.5	-0.2	-1.5
	2/36 m	Service Tunnel			0			0.0
	1/36 m	Service Tunnel			0			1.166
RF Distribution (Attenuators, Loads, Waveguide,	1/36 m	Penetration			0.676			
Circulators all in series connection)	1/36 m	Beam Tunnel			0.0	0	(5.9
	26/36 m	Beam Tunnel			2.49	0		0.0
	24/36 m	Beam Tunnel			30.05			0.0
Subtotal RF unit Only			90	82	102.0			
Total RF			107	99	103.5	11.5		21./

_	Secretary Secret	
to el W)	PLAH - 4.5M SERVICE TUNNEL SELEVATION - SERVICE TUNNEL ELEVATION - SERVICE TUNNEL	AND PROPERTY TO SECURE AND SECURE
)	1. Racks	11.5
	2. PR & Motor Loss	8.2
4	2 Wayoquidos (P.T.)	<i>5</i> 0

2. PR & Motor Loss
 3. Waveguides (B.T.)
 4. Switching P.S.
 5.0 kW
 5. Modulator
 3.0 kW

Total of top 5 = 31.6 kW82% of total (S.T.32.9+B.T.5.9 kW)

But are these loads real and cannot we reduce?...

Total Heat load to Air/Chilled water in service tunnel (per RF)	32.9
Total Heat load to LCW (per RF)	103.5
Total Heat load to air in beam tunnel (ignore rock contribution for now)	5.9

kW

Parametric Consideration

To understand heat loads to air, lets see how are heat diffusion and conduction..

Heat Diffusion from Plates

$q(W/m^2) = U(\theta - \theta_a)$

U: Heat transfer rate (W/m²/K)

θ: Equipment temperature (C)

 θ_a : Ambient temperature (C)

$U = (R_{se} + R_i)^{-1}$

R_{se}: Surface heat resistance

R; : Heat resistance of the material

$$R_{se} = (h_r + h_{cv})^{-1}$$

h_r: HTE by "Radiation"

h_r: HTE by "Convection"

$$h_r = \varepsilon \sigma (T_{se}^4 - T_a^4) / (T_{se} - T_a)$$

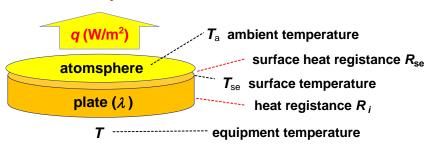
ε: Efficiency due to the material, ex. 0.30 (stainless steel), 0.94 (cement, cloth)

σ: Stefan-Boltsmann constant, 5.67 x 10-8 Wm-2K-4

T_{se}: Surface temperature (K), T_a: Ambient temperature (K)

$$h_{cv} = \begin{bmatrix} 3.26 \Delta \theta^{0.25} ((w+0.348)/0.348)^{0.5} & upward-directed surface \\ 2.28 \Delta \theta^{0.25} ((w+0.348)/0.348)^{0.5} & doward-directed surface \\ 2.56 \Delta \theta^{0.25} ((w+0.348)/0.348)^{0.5} & vertical planes (\Delta \theta < 10K) \\ (3.61+0.094 \Delta \theta^{0.25} ((w+0.348)/0.348)^{0.5} & vertical planes (\Delta \theta < 10K) \end{bmatrix}$$

 $\Delta\theta = |T_{so} - T_{a}|$


w: Air flow velocity (m/s)

$R_i = d/\lambda$

d: Thickness of the material (m)

 λ : Thermal conductivity of the material (Wm⁻¹K⁻¹)

Heat diffusion by Radiation and Convection

The order of "Surface Heat Resistance"

For T_a (ambient temperature) 29 C and T_{se} (surface temperature) 34~54 C

(1) Heat Radiation

assume $\varepsilon = 1.0$

$$h_r = \varepsilon \sigma (T_{se}^4 - T_a^4) / (T_{se} - T_a) = 6.4 \sim 7.1 \text{ (Wm}^2 \text{K}^{-1})$$

(2) Air convection

assume w = 0.45 m/s (27 m/min)

$$h_{cv} = 3.26 \Delta \theta^{0.25} ((w+0.348)/0.348)^{0.5} = 7.4 \sim 11.0 \ (Wm^{-2}K^{-1})$$
 upward-directed surface $h_{cv} = 2.56 \Delta \theta^{0.25} ((w+0.348)/0.348)^{0.5} = 5.8 \sim 8.7 \ (Wm^{-2}K^{-1})$ vertical planes ($\Delta \theta$ >10 K)

(3) Overall heat diffusion from equipment surfaces

assume ε = 1.0 and w = 0.45 m/s (27 m/min)

$$h = 12 \sim 18 \text{ W/m}^2/\text{K} \text{ (for } \Delta T = 5 \sim 25 \text{ deg)}$$

Suppress the Heat load to Air!

Heat load to air by RF equipment when LCW used

Estimated diffusion when $\Delta T = 5 \text{ deg}$, $\varepsilon = 1$, w = 0.45 m/s

T: Equipment temperature (34 C)

T_a: Ambient temperature (29 C)

		Landta	Estima	ited Heat D	ifusion
	Heat Load	Load to Air/Chilled Water (@present)	Top panel (m2)	Side panel (m2)	Heat difussion (kW) @∆T=5de
1 Racks	11.5	11.5	8.8	56.7	4.1
2 I ² R & Motor Loss	8.22	8.2			0.0
3 Waveguides (B.T.)	5.9	5.9	24.6	45.9	4.5
4 Switching P.S.	7.5	3	3.0	14.5	1.1
5 Modulator	7.5	3	4.6	21.3	1.6

Total of top 5 40.62 31.6 11.3

Effects of Heat Insulator

----- 釈迦に説法 (Preaching Budda) -----

Heat radiation and convection

assume $\varepsilon = 1.0$ and w = 0.45 m/s (27 m/min)

 $h = 12 \sim 18 \text{ W/m}^2/\text{K} \text{ (for } \Delta T = 5 \sim 25 \text{ deg)}$

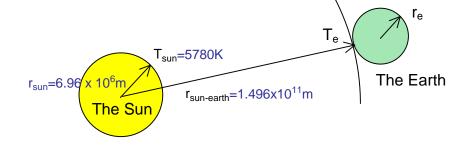
 $R_{\rm se} = 0.056 \sim 0.083 \ W^{-1} m^2 K$

Heat resistance of insulator (1 mm)

 $R_i = d/\lambda = 0.020 W^{-1} m^2 K$

d: Thickness of the material (0.001 m)

 λ : Thermal conductivity of insulator (0.05 Wm⁻¹K⁻¹)


- A few mm of heat insulator is comparable to surface resistance
- A few cm of heat insulator is usually enough for completeness of water cooling system

Ambient Temperatures

Surface and Underground

Earth Temperature

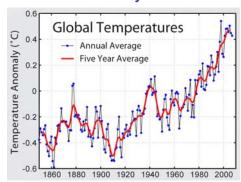
-- as a short note --

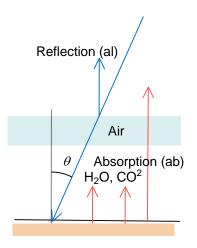
Solar constant

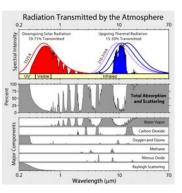
$$q_{sun} = \sigma T_{sun}^4 \times 4\pi r_{sun}^2 / 4\pi r_{sun-earth}^2 = 1370 \text{ W/m}^2$$

Temperature of the earth

$$q_{sun} \pi r_e^2 = \sigma T_e^4 \times 4\pi r_e^2$$
 (equilibrium)


$$\implies T_e = 279 K (6 C)$$


Temperture on the ground depends on site


 $q_{sun} \times \cos\theta (1-al) = \sigma T_g^4 (1-ab)$ (equilibrium)

 $\cos\theta = \sin\Theta\cos\omega_d t\cos\omega_v t + \sin\Theta\sin\omega_d \cos\mu \sin\omega_v t + \cos\Theta\sin\mu\cos\omega_v t$

Θ: latitude, μ=23.5 deg, $ω_d$ =2π/day, $ω_v$ =2π/year

Temperatures affects surface cooling tower

Place	Altit	Altitude Temperature Monthly Average										Annual Average	Statistical Peoriod			
	d	m	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	sep	Oct	Nov	Dec		
Moscow-Dolgoprudnyj	55	50	-7.5	-6.7	-1.4	6.4	12.8	17.1	18.4	16.5	10.8	5.0	-1.6	-5.5	5.3	1971-2000
Chicago-Ohare	41	59	-5.6	-2.8	3.0	9.0	15.1	20.4	23.4	22.4	18.0	11.4	4.3	-2.2	9.7	1971-1999
Zurich-Town	47	23	0.3	1.3	5.1	8.1	12.8	15.6	18.0	17.7	14.0	9.3	4.1	1.5	9.0	1971-2000
Berlin-tempelhof	52	28	0.8	1.5	4.9	8.7	14.2	17.2	19.2	18.8	14.5	9.6	4.9	2.0	9.7	1971-2000
Morioka	39	42	-2.1	-1.6	1.8	8.4	13.8	18.2	21.8	23.2	18.3	11.8	5.7	0.8	10.0	1971-2000
Tokyo	35	41	5.8	6.1	8.9	14.4	18.7	21.8	25.4	27.1	23.5	18.2	13.0	8.4	15.9	1971-2000
Fukuoka	33	35	6.4	6.9	9.9	14.8	19.1	22.6	26.9	27.6	23.9	18.7	13.4	8.7	16.6	1971-2000

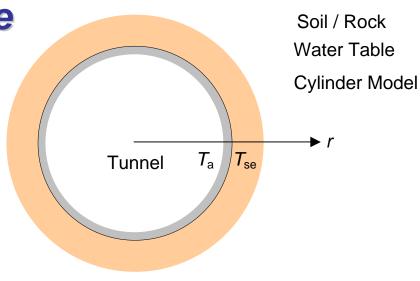
Place	Altit	Altitude Relative Humidity Monthly Average										Annual Average				
	d	m	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	sep	Oct	Nov	Dec		
Moscow-Dolgoprudnyj	55	50	80	76	73	67	64	63	69	74	78	79	82	82	74	1961-1967
Chicago-Ohare	41	59	72	72	70	65	64	66	69	71	71	69	73	76	70	1961-1990
Zurich-Town	47	23	85	80	75	72	73	74	73	77	81	84	84	85	79	1961-1990
Berlin-tempelhof	52	28	89	83	76	68	64	61	65	69	73	79	87	89	75	1961-1967
Morioka	39	42	73	71	68	66	69	76	81	80	81	78	74	74	74	1971-2000
Tokyo	35	41	50	51	57	62	66	73	75	72	72	66	60	53	63	1971-2000
Fukuoka	33	35	64	64	66	67	69	76	75	74	74	69	67	65	69	1971-2000

Detail design and comparison of site difference are the next step after the system optimizaton.

Beam Tunnel Temperature

Tunnel Air temperature without wall loss

```
\Delta T = P/(Fc)
P:heat load [W],
F: air flow [g/s],
c: specific heat capacity [J/(gK)]
```

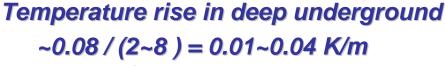

When,

P = 5.9 kW x 104 = 0.61 MW, $F = 7.16 \text{ m}^3/\text{s} (=\pi \text{ x } 2.25^2 \text{ m}^2 \text{ x } 0.45 \text{ m/s})$ $\rho = 1184 \text{ g/m}^3$ c = 1.020 J/(gK) (hum~50%) $\Delta T \sim 70 \text{ deg!}$

Heat Diffusion into tunnel wall $q = h \Delta T$

Assuming the tunnel surface heat resistance (1/h) $h = 12 \sim 18 \text{ W/m}^2/\text{K}$ (for $\Delta T = 5 \sim 25 \text{ deg}$)

 $S = \pi \times 4.5 \text{ m} \times 36 \text{ m} \sim 500 \text{ m}^2 \text{ (Tunnel wall / RF init)}$ $Sh = 6 \sim 9 \text{ kW /K}$


How is Underground Temperature?

Depend on the geology

Deeper than 10 m, the temperature is constant

Geothermal heat flow forward the surface ground $\sim 40 \times 10^{12} / 4\pi (6.4 \times 10^6)^2 = \sim 0.08 \text{ W/m}^2$

the total geothermal heat of the earth (W) / the surface area of the Earth (m²)

Heat flow (W/m²) / the thermal conductivity (W/mK)

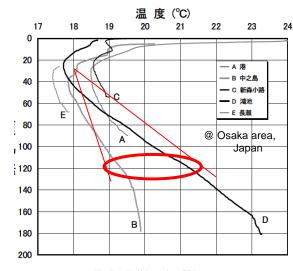
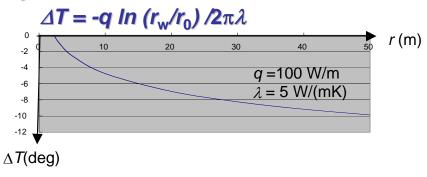



図-7 温度と深さの関係 (K.Kitaoka, Okayama university of science)

How is tunnel wall Temperature?

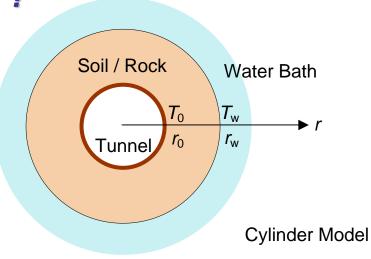
Cylinder Model

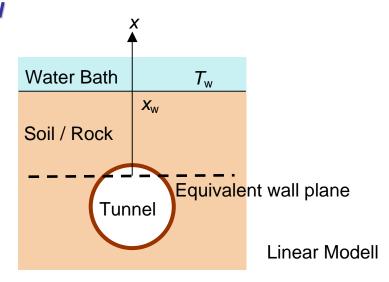
Assuming a bath, r_w - $r_0 = 50$ m, $\Delta T = 10$ deg, 100 W/m could be removed from the tunnel

Linear Model

$$\Delta T = -Q \times /\lambda, \quad Q = q \times 2\pi r \text{ (guess)}$$

$$0 \rightarrow 0 \rightarrow 0$$


$$-5 \rightarrow 0$$


$$q = 100 \text{ W/m}$$

$$\lambda = 5 \text{ W/(mK)}$$

$$\Delta T \text{(deg)}$$

Assuming a bath, r_w - $r_0 = 7 \text{ m}$, $\Delta T = 10 \text{ deg}$, 100 W/m could be removable

Summary at Dubna

- (1) Delta T increase and Chilled Water Decrease are potential measures to reduce cooling costs.
- (2) Effect of high ∆T to room T may be suppressed by insulator with relative low cost.
- (3) Effect of high ∆T to equipment and beam instability should be studied separately.
- (4) Alternative air cooling system using package air conditioner is under consideration.
- (5) More investigation and effort to decrease heat load to air are necessary.
- (6) Cooling effect by tunnel wall depends on geology of the site, though an order of ~100 W/m may be cooled under some conditions.
- (7) LCW skid loop with complicated piping is another impact to raise cooling cost but the study is a subject to be solved hereafter.