
Analysis of ZH recoil mass

Kazutoshi Ito Tohoku university 18th Nov. 2008

Introduction

- Motivation of the recoil mass study.
 - e+e- → ZH → I+I-X is the golden channel for measurement of Higgs mass and coupling of ZH.
 - Higgs mass is reconstructed by using only charged leptons from Z.

- Today's topic.
 - Reconstruction of recoil mass.
 - Estimation of the measurement accuracy for the ZH cross section and Higgs mass.

Simulation setup

- CM energy: 250 GeV
- Detector model : LDCPrime_02Sc
- Event generator : Pythia

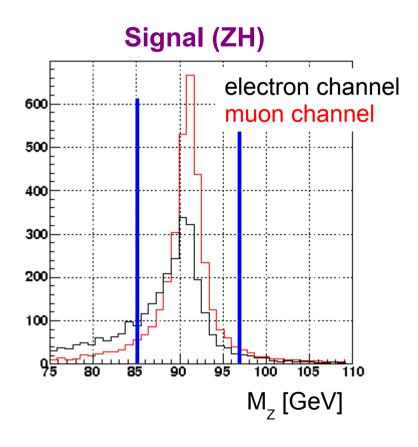
Signal

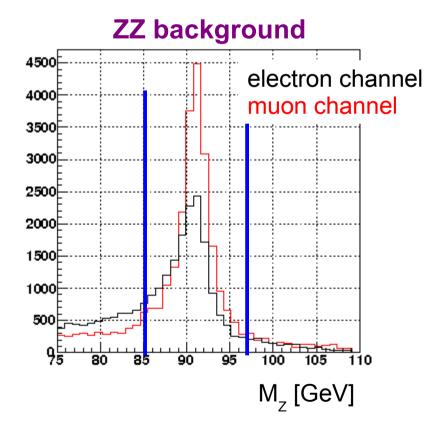
- ee \rightarrow ZH \rightarrow ee X (7.5 fb)
- ee \rightarrow ZH $\rightarrow \mu\mu$ X (7.5 fb)
 - Luminosity: 1300fb⁻¹ (10k events)

Background

- ee \rightarrow ZZ \rightarrow ee X (78.7 fb)
- ee \rightarrow ZZ $\rightarrow \mu\mu$ X (79.0 fb)
 - Luminosity: 127 fb-1 (10k events)

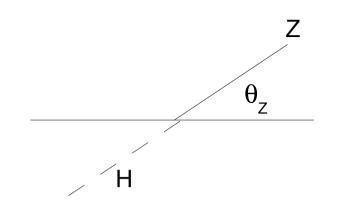
The number of events are scaled to 250 fb⁻¹.

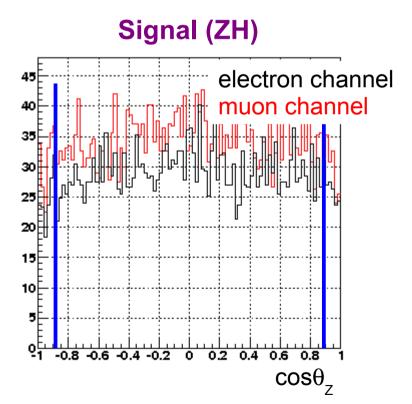

Analysis outline

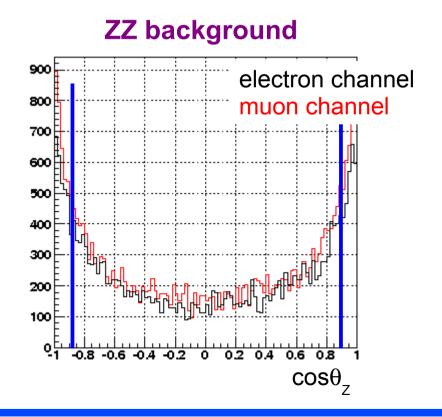

- 1. Selection of 2 lepton tracks from Z.
 - Two tracks have the least χ^2 value for M_7 .
- 2. Selection of well-reconstructed events.
- 3. Reconstruction of Higgs recoil mass.
- 4. Estimation of measurement accuracies for $\sigma(ZH)$ and $M_{_H}$.
 - These accuracies were obtained by fitting.

The selection and fitting function are shown.

Mz cut


- Mz is reconstructed with the selected two lepton tracks.
- Events with Mz of 85-97 GeV are selected.



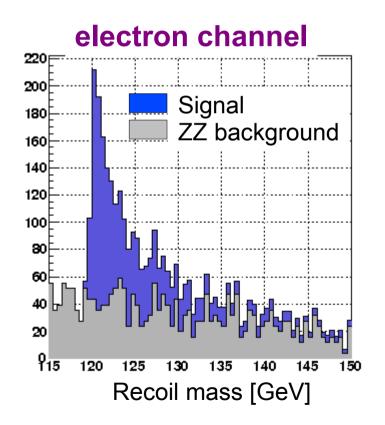


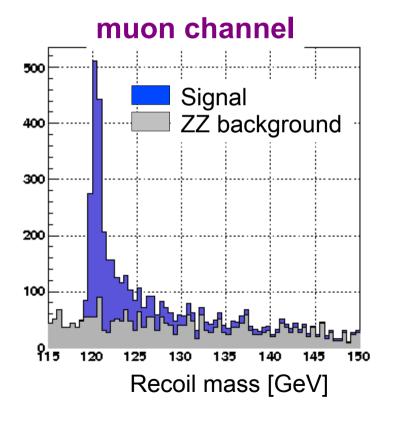
costz cut

- The Z production angle cut is applied.
 - The events with the range of $|\cos\theta_z| < 0.9$ are selected.

Reduction summary

• M_z and $cos\theta_z$ cuts reduce the ZZ background.


e-channel	signal (ZH)	ZZ
No cut	10000	10000
Pre-cut	7706 (77.1%)	6061 (60.6%)
85 < Mz < 97 GeV	5537 (55.4%)	3985 (39.9%)
$ \cos\theta_{\text{lepton}} < 0.95$	5028 (50.3%)	3627 (36.3%)
$ \cos\theta_z < 0.9$	4631 (46.3%)	2874 (28.7%)


Pre-selection cut: $E_{lepton} > 10 \text{ GeV}$ $73 < M_7 < 109 \text{ GeV}$

μ-channel	signal (ZH)	ZZ
No cut	10000	10000
Pre-cut	9183 (91.8%)	7010 (70.1%)
85 < Mz < 97 GeV	7958 (79.6%)	5515 (55.2%)
$ \cos\theta_{\text{lepton}} < 0.95$	7184 (71.8%)	4994 (49.9%)
$ \cos\theta_z < 0.9$	6581 (65.8%)	3891 (38.9%)

Reconstructed recoil mass

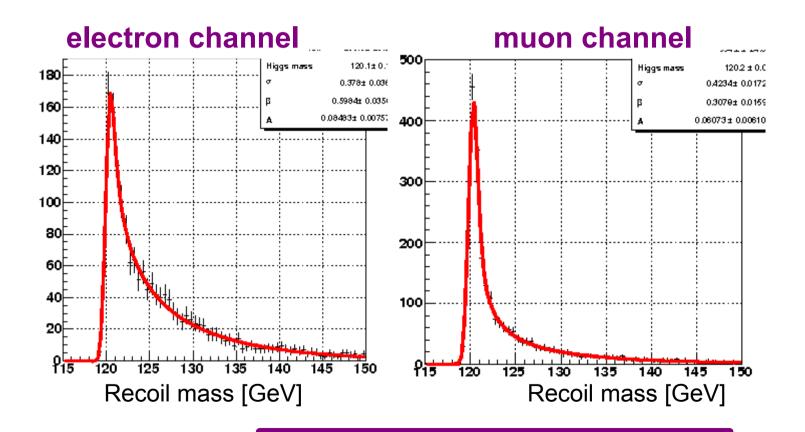
- The recoil mass is reconstructed after applying all the cuts.
- A peak is observed at 120 GeV for signal events.
- There is a tail from ZZ background at Higgs mass.

Fitting function for signal

- Signal distribution is fitted by the empirical function.
 - F_H is convoluted with Gaussian.
 - The convolution function is multiplied by a correction term.

$$F(m) = N e^{-Am} \int F_H(m+t) e^{\frac{-t^2}{2\sigma^2}} dt$$

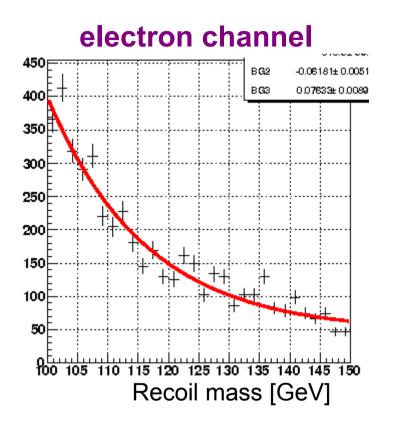
Correction term

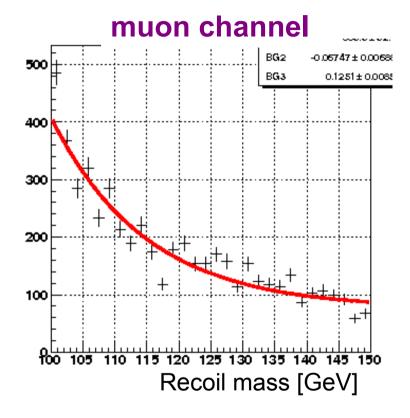

F_H is inspired from the bremsstrahlung and beamstrahlung spectra.

$$F_{H}(m) = \left(\frac{m - M_{H}}{\sqrt{s} - M_{H}}\right)^{\beta},$$
where $M_{H} < m < \sqrt{s}$

Fitting result (signal only)

Signal distribution is fitted by the empirical function.

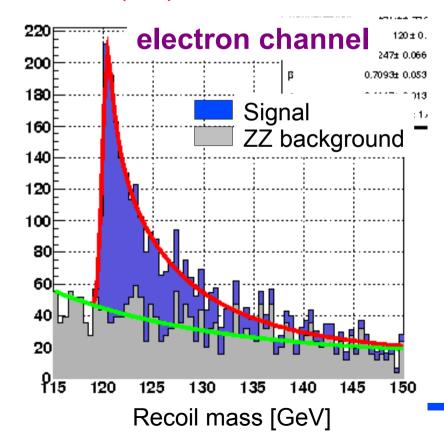

$$F(m) = N e^{-Am} \int F_H(m+t) e^{\frac{-t^2}{2\sigma^2}} dt$$



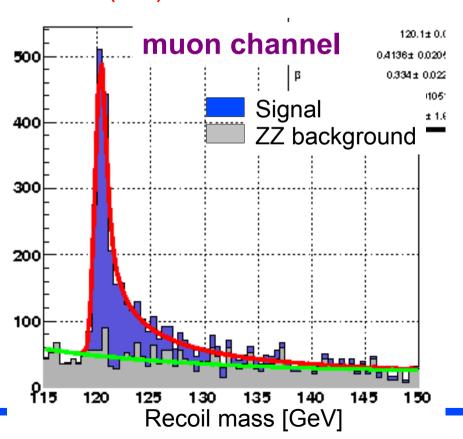
Fitting result seems to be good.

Fitting function for background

ZZ background is fitted with exponential function.



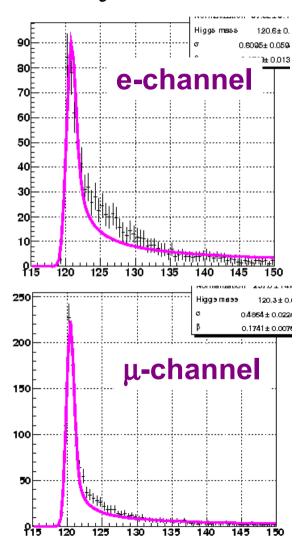
Then, "Signal + Background" is fitted.


Background parameter is fixed except for the normalization.

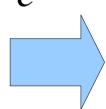
Measurement accuracy

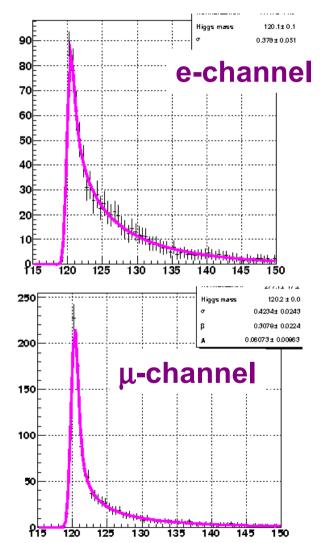
- Signal + B.G. is fitted.
 - Measurement accuracies for electron channel.
 - $M_H = 120.0 + -0.10 \text{ GeV}$
 - $\sigma(ZH) = 7.5 + -0.35 \text{ fb}$

- Measurement accuracies for muon channel.
 - $M_H = 120.1 + -0.041 \text{ GeV}$
 - $\sigma(ZH) = 7.7 + -0.29 \text{ fb}$


<u>Summary</u>

- Status of the recoil-mass study was shown.
 - ZZ background is only included.
 - To include other backgrounds (bhabha, WW, etc.) is the next step.
- This analysis is the model independent.
 - After including the other backgrounds, we will try to apply the model independent analysis for LOI.
- Measurement accuracies were estimated for 250 fb⁻¹.
 - Higgs mass:
 - 0.10 GeV for the electron channel.
 - 0.041 GeV for the muon channel.
 - Cross-section for the ZH:
 - 4.7% for the electron channel.
 - 3.8% for the muon channel.


Backup slides


<u>Fitting of signal distribution</u>

$$F(m) = N \int F_H(m+t) e^{\frac{-t^2}{2\sigma^2}} dt \qquad F(m) = N e^{-Am} \int F_H(m+t) e^{\frac{-t^2}{2\sigma^2}} dt$$

Add correction term

