## Calorimeter Test Beam Requirements

for

ILC Detectors

Andy White

University of Texas at Arlington

LCW508, Chicago, November 2008

#### With thanks to:

Felix Sefkow, Jose Repond, Roman Poeschl, Jae Yu, Paul Dauncey, John Hauptman, Marcel Reinhard,... for helpful thoughts, comments etc. ...and apologies to those I did not talk to...

### Outline

#### A series of questions:

- What tests have been made so far some examples of results
- What do we need to test next?
- What test beam facilities do we have?
- What extra facilities do we need?
- When might we need them?
- How far do we need to go in tuning our simulations to match test beam data?

# What tests have been made so far - some examples of results

### Overview of ILC Calorimeter development

- 1) Electromagnetic calorimetry
  - CALICE Si-W
  - CALICE Scintillator -W
  - Oregon-SLAC-BNL Si-W
  - CALICE MAPS DECAL
- 2) Hadron calorimetry
  - CALICE Scintillator-Steel AHCAL
  - CALICE RPC-Steel DHCAL U.S.
  - CALICE RPC-Steel DHCAL Europe
  - CALICE GEM-Steel DHCAL
  - CALICE Micromegas-Steel DHCAL
- 3) Dual readout ECal + HCal

## Example: CALICE test beams at DESY, CERN

(1) Si-W ECal 2006/7



## Example: CALICE test beams at FNAL

### (2) ScECal 2008









## Example: CALICE test beams at CERN, FNAL

- (3) Scintillator/SiPM AHCAL
- -> results from CERN TB runs in 2006:



Longitudinal shower profile

Using CERN 2006 data (23 layers)

- combined AHCAL+TCMT data
- latest data corrections & MC digi
- Birks' law included in MC

⇒ longit. granularity can provide contraint

er models!



#### CALICE/FNAL summer 2008

#### Run Plan - Accomplishments

4.-7. July: Muon Calib. accomplished 9/7/08
At two different holds

8.-9. July: Dedicated Ecal Running accomplished 13/7/08 with trigger optimized Ecal

> 9. July: Running with slow trigger

10.-16. July: Completion of accomplished 20/7/08 (low energy) pion program

17. July: Running with Hcal and Ecal accomplished 22/7/08 shifted w.r.t beam and to each other

18.-24. July: Running at rotated position
10 (20) and 30 degrees

Cover the full energy range

accomplished 26/7/08
20 and 30 Degrees

25.-26.July: Spare Time for combined program or low energy proton running

(but not all points)

27. July – 1. August Hcal Only Running

CALICE Collaboration Meeting Sept. 2008

A 120 GeV proton shower recorded by W/Si Ecal+steel/scintil.Hcal+TailCatcher. (Wed 30 Apr 2008)





22

## Example: CALICE test beams at FNAL

(4) RPC/Steel DHCAL (U.S.)











## Example: CALICE test beams at CERN

### (5) RPC/Steel DHCAL (Europe)



| 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 | 192-160-0.1 |

Test a mini DHCAL with new generation embedded electronics readout in beam conditions for the first time



With 2 cm Steel slabs and one  $\lambda$  I.L (Tungsten)

## Example: CALICE test beams at CERN

### (6) Micromegas DHCAL (Europe)



- The data (CERN H2B)
  - 6-7 August Muons & Pions (Gain inter-calibration)
  - 14-15 August : 205 000 Muons
- 15 August : 150 000 Pions





## Example: CALICE test beams at FNAL

### (7) GEM-DHCAL 2007











X-Talk measurement

## Example: 4th Concept

- L3 BGO crystals in front of small DREAM module
  - -> August 2008 data analysis in progress.
  - -> Two papers expected
  - -> Small module => no hadron containment Hadronic energy

Dual-readout calorimeters
(CERN beam tests)

BGO
beams

Hadronic energy resolution (fibers)



# What test beam facilities do we have?

See previous talks +...

### Test Beam Facilities as of mid-2007 - needs update!

| Facility          | Primary beam energy<br>(GeV)   | Particle<br>types | Beam<br>lines | Beam Instr.                                      | Availability and plans                                              |
|-------------------|--------------------------------|-------------------|---------------|--------------------------------------------------|---------------------------------------------------------------------|
| CERN PS           | 1–15                           | e, h, µ           | 4             | Cerenkov,<br>TOF, MWPC                           | Available, but reduced<br>services during LHC<br>commissioning      |
| CERN SPS          | 10-400                         | e, h, μ           | 4             | Cherenkov,<br>TOF, MWPC                          | Available, but reduced<br>services during LHC<br>commissioning      |
| DESY              | 1–6                            | e                 | 3             | Pixels                                           | Available over 3<br>mo/yr                                           |
| FNAL-<br>MTBF     | 1-120                          | p, e, h, μ        | 1             | Cherenkov,<br>TOF, MWPC,<br>Si strips,<br>pixels | Continuous at 5% duty<br>factor, except for<br>summer shutdowns     |
| Frascati          | 0.25-0.75                      | e                 | 1             |                                                  | Available 6 mo/yr                                                   |
| IHEP-<br>Beijing  | 1.1-1.5<br>0.4-1.2 (secondary) | e<br>e, π, p      | 3             | Cherenkov,<br>TOF, MWPC                          | Available in March<br>2008 or later                                 |
| IHEP-<br>Protvino | 1–45                           | e, h, µ           | 4             | Cherenkov,<br>TOF, MWPC                          | Two one-month<br>periods per year                                   |
| KEK-Fuji          | 0.5–3.4                        | е                 | 1             |                                                  | Available in fall 2007,<br>for 8 mo/yr, as long as<br>KEKB operates |
| LBNL              | 1.5; <0.06; <0.03              | e; p; n           | 1             | Pixels                                           | Continuous                                                          |
| SLAC              | 28.5<br>1–20 (secondary)       | e<br>e, π, p      | 1             |                                                  | Shutdown in 2008-<br>2009, with uncertain<br>plans beyond           |

From Fermilab-TM-2392-AD-DO-E Roadmap TB document, 2007

# What do we need to test next? Short/medium term

### CALICE 2008-2010

SiW ECAL + SciFe HCAL: essentially compete

SciW ECAL + SciFe HCAL: one more beam period at MTBF in spring or early summer 2009, maybe including some HCAL standalone runs with e-

Any ECAL, most likely SiW, + RPCFe HCAL(US): start integration and first runs with sub-set of  $\sim$  10 layers in 2009 at MTBF, hopefully to be completed with fully equipped cubic-meter in first half of 2010 - including tests with GEM replacement layers in 1m<sup>3</sup> - later in 2010.

European DHCAL: individual/few layers in 2009; full scale prototype in late 2009/early 2010 (at CERN?)

ECal EUDET Module: complete by end 2009 -> beam tests in 2010

SciFE HCAL: multiple integrated layers in 2010?



EUDET module FEE: module FEE: module

issues

- <u>Technical prototype</u>
- Test many technical issues
  - "stictchable" motherboards
  - Minimize connections between boards
  - Reduce PCB thickness to <1mm</li>
  - Internal supplies decoupling
  - Mixed signal issues
  - Digital activity with sensistive analog front-end
  - Pulsed power issues
  - Electronics stability
  - Thermal effects
  - To be validated in beam

C. de La Taille - CALICE/Manchester '08





## 4th Concept

- Plans (from 2006) for 1m<sup>3</sup> module construction at Fermilab. ...but...no funding.
- Current aim:  $1m^3$  dual readout fiber module  $(10\lambda)$  + dual readout crystal calorimeter  $(25X_0)$  in front 1 month test.

- Adam Para - total absorption calorimeter/dual readout;

EM section crystals/Si pixel layers/Hadronic section with larger crystals

Timescale for tests?

## What do we need to test next? Short/medium term

It appears that this program can be achieved with existing test beam facilities.

# What do we need to test next? Long term

Will depend on technology choices and other concept-dependent issues...a few items may be anticipated...

## SiD Si-W Electromagnetic Calorimeter

#### R&D needed to demonstrate readiness for "RDR" (2012):

- Fabricate a functional test module with the real elements, KPiX-1024 bump-bonded to sensors
  - Test in a beam with good noise performance
- Long flex-cables
- Mechanical prototype (including thermal demonstration)

## SiD HCal Engineering Design

Design work by Nicolas Geffroy (LAPP)

More realistic engineering designs are emerging - eventually we will need to test complete modules, and complete detector slices in test beam(s)..201x



### CALICE

Full HCal module with existing absorber in 2011?



Full wedge (tracking, ECal, HCal,...) beam tests??

-> PFA validation? B-field tests? ...?

### Particle ID

- Not discussed in ILC detector meetings recently
- What Particle ID does the ILC physics program need
- 4th Concept have their own view...

|        | г пузісат шеазатеніен                                                    | rarions/particles discriminated       | эпокумены цэсц                  |                            |
|--------|--------------------------------------------------------------------------|---------------------------------------|---------------------------------|----------------------------|
| 4      |                                                                          |                                       | dual-readout                    |                            |
| - 1    | $\sum_{i}C_{i} \ vs. \ \sum_{i}S_{i}$                                    | $e^{\pm} vs. \pi^{\pm} vs. \mu^{\pm}$ | fiber (S and C) 🗲               | —Beam test data            |
| 1.     |                                                                          |                                       | calorimeter                     |                            |
| ~      |                                                                          |                                       | dual-readout                    |                            |
| 2.     | $\chi^2 \sim \frac{1}{n} \sum_{i=1}^{n} [C_i - S_i]^2 / [k(C_i + S_i)]$  | EM vs. non-EM                         |                                 | <del></del> Beam test data |
|        | $(k \sim 0.10)$                                                          | vs. "hadronic"                        | calorimeters                    |                            |
| ~      |                                                                          | "hadronic"                            | scintilating                    |                            |
| 3.     | $f_n \sim E_n/E_{\text{shower}} \text{ (slow } n\text{'s)}$              | vs.                                   | fibers $S_{pe}(t)$ $\leftarrow$ | —Beam test data            |
| ٥.     |                                                                          | EM or "muonic"                        | long-time history               |                            |
| 4      |                                                                          |                                       | dual-readout                    |                            |
| 4.     | (S-C) vs. $(S+C)$                                                        | $\mu \ vs. \ \pi \ vs.e$              | fiber (S and C)                 | <del></del> Beam test data |
| • • •  |                                                                          |                                       | calorimeter                     |                            |
| _      |                                                                          |                                       |                                 | _                          |
| 5.     | Time-history of S fibers                                                 | EM vs. non-EM                         | dual readout S fibers           | —Beam test data            |
|        |                                                                          | vs. "hadronic"                        |                                 |                            |
| 6.     |                                                                          | K (6 G II)                            |                                 |                            |
| Ο.     | dN/dx cluster counting                                                   | $e - \mu - \pi - K - p$ (few GeV)     | CluCou tracking                 | Bench test data            |
|        |                                                                          |                                       |                                 |                            |
| 7.     |                                                                          |                                       | GLG . I'.                       |                            |
| / .    | EM calor + tracking                                                      | $e-\gamma$                            | CluCou tracking +               |                            |
|        |                                                                          |                                       | dual-readout calor's            |                            |
| 8.     | ~ F                                                                      | sund through trooks                   | CluCon solon muon               |                            |
| 0.     | $p_{\text{tracking}} \approx E_{\text{dual-readout}} + p_{\text{muon}}$  | $\mu vs$ . punch-through tracks       | CluCou, calor, muon             |                            |
|        |                                                                          |                                       |                                 |                            |
| O      | $\tau^{\pm} \rightarrow \rho^{\pm}\nu \rightarrow \pi^{\pm}\gamma\gamma$ | $\tau vs.$ hadronic debris            | BGO dual-readout                |                            |
| 9.     | 1 - p v - x - f l                                                        | 7 vs. Hadronic debris                 | CluCou, calor.                  |                            |
|        |                                                                          |                                       | Crucou, casor.                  |                            |
| $\cap$ | sub-ns time-of-flight                                                    | massive SUSY object                   | Čerenkov pulses in BGQ          |                            |
| U.     | Sab-iis dink-or-night                                                    | massive boot object                   | and fiber calorimeter           | Beam test data             |
|        |                                                                          |                                       | card noor conormicor            |                            |
| 1      | $W, Z \rightarrow jj$ mass                                               | W, Z vs.  QCD  jj                     | CluCou, jet finding,            | ILCroot                    |
| 1.     | , , , , , , , , , , , , , , , , , , ,                                    | ,2 4,02 ,,                            | dual readout calor's            | 1201001                    |
|        |                                                                          | I .                                   |                                 |                            |

Particle ID in 4th

John Hauptman - this meeting

## Questions for the future

- Do we need to test technical prototype modules in magnetic fields?

If so, how do we provide a large volume, high field region?

- $\rightarrow$  Size of effects simulations?
- $\rightarrow$  Lead time for request to labs, agencies?
- Do we need higher energy beams than we have now? What if CLIC turns out to be the right machine?
  - → New/heavy particle(s) may decay to multiple jets with not so high energies?
  - → Depth of calorimetry/size of detector?

## Questions for the future

- Do we still need to think about getting the shower model(s) in GEANT4 "right"?
  - → restrict range of models/parameters constrain to test beam data?
- -...and, do we need a neutral beam?
  - $\rightarrow$  if we have the charged component of showers correct, are there models for neutrals that are significantly different? Would this affect the PFA(s)?
  - → large experimental effort on neutral beams is it worth it?

### Questions for the future

- what are the prospects for getting "synchronous" beams at CERN and/or MTBF?
  - → for which aspects of detector development is this critical, and when?
- CALICE: test EUDET electronics with power-pulsing? CERN PS or Fermilab MTBF?

### Conclusions

- Vigorous test beam program in progress
- Extensions into 2009/2010
- Present facilities appear to accommodate the program through 2010
- Long term tests not so well defined
- Need to decide soon (for funding, planning, construction,... lead time) if we need additional significant facilities and/or long term attack on GEANT4 shower model(s) issue.

### Extra material

## SiD HCal



| po (00.)                                     | 40, 50, 60, 80                                              | 150, 180                                                                                                                                                |
|----------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| (deg)                                        | 0, 10, 15, 20, 30                                           | 0, 10, 20, 30                                                                                                                                           |
| ned physics package;<br>low energy programme | pi: 500K<br>evts@6/10/12/15/18/20GeV;<br>10, 15, 20, 30 deg | pi <sup>-</sup> : 400K evts<br>@6/8/10/12/15/18/20 GeV<br>deg;<br>1M evts @6 GeV; 500K ev<br>@8-20 GeV @20 deg.                                         |
| ohysics package;<br>ns: low energy<br>mme    | e <sup>-</sup> : 1M evts@6/10/15(/20) GeV,<br>0 deg         | e <sup>-</sup> : 500K evts @6 GeV @0<br>~700K evts @8/10/12/15/1<br>GeV @0 deg.<br>1M evts @6 GeV @20 deg<br>~400K evts @8/10/12/15/1<br>GeV @10,20 deg |
| ohysics package;<br>ns: high energy<br>mme   |                                                             | e <sup>-</sup> : ~2M evts @25/30/40/50<br>@0 deg;<br>~200K evts @25/30/40/50<br>@10,20 deg.                                                             |
| ohysics package;<br>ns: high energy<br>mme   |                                                             | e <sup>-</sup> ; scan of the bottom layer<br>ECAL: 5 position points,<br>~250K evts @90 GeV @0<br>per position.                                         |
| rradiation package:                          | e:: 1M evts@10/50 GeV.                                      | e <sup>-</sup> : 1.1M evts @70 GeV @0 position scannig:                                                                                                 |