

RTML progress 2008

Nikolay Solyak

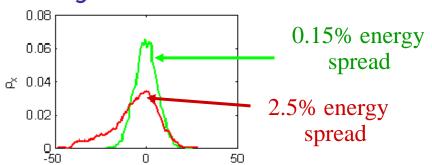

RTML status

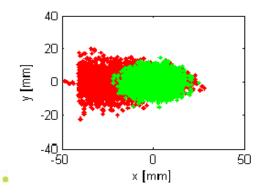
- Very limited resources available in FY08 due to funding cut
- R&D plans and milestones, discussed at SLAC LET meeting, Dec.2007 were delayed.
- Nevertheless few important studies were accomplished.
- New task: Support Minimum Machine configuration – Single-stage Bunch Compressor studies

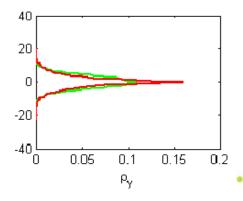
RTML Schematic

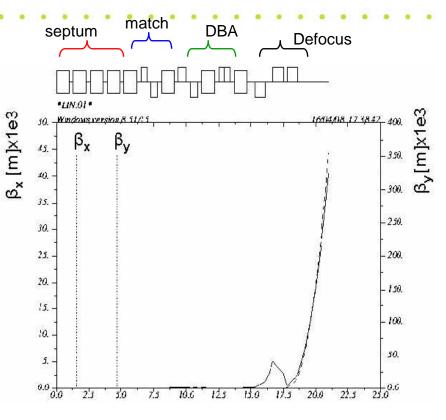
Note: e- and e+ RTMLs have minor differences in Return line (undulator in e- linac side) and Escalator (DR's at different elevations); they are otherwise identical.

RTML Progress in FY2008

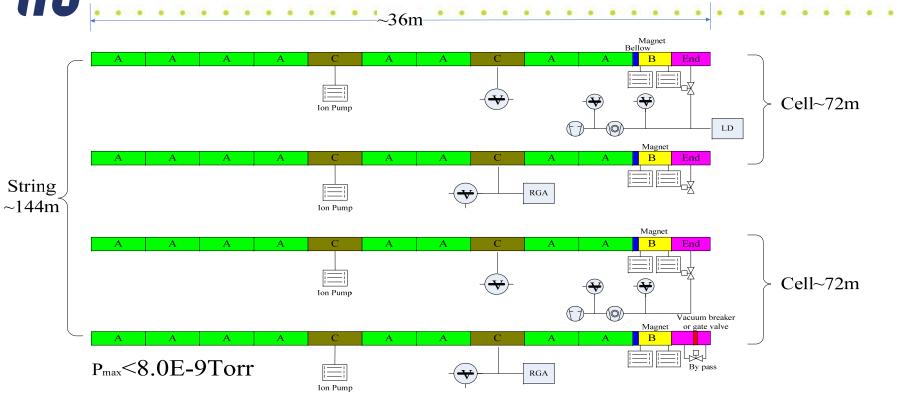

Technical Systems


- Design and preliminary studies of three Pulsed extraction lines for emergency beam abort (MPS) and tune-up (S. Seletskiy talk)
 - Different beam parameters and requirements
 - Specifications for all elements (magnets, kickers, septum magnets, collimators, etc.
 - Documentation: Report, SLAC preprint, EPAC08
- Re-evaluation of the Vacuum system for RTML return line (Xiao Qiong, IHEP/China)
 - Conceptual design of vacuum system and specs for SS passivated and non-passivated tubes.
 - Component counts and Cost estimation.
- Magnetic Stray field studies (tight requirements for return line) – (D.Sergatskov talk)
 - ILC: H < 2 nT (f>1Hz); CLIC: H < 0.2 nT (f>10Hz)




EL_BC1 Line Design

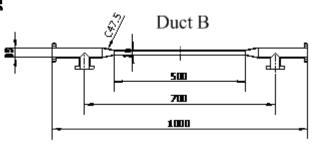
- Separation of the two lines at CM location (14m down) - 2m;
- Separation of the dump and the ML \sim 5 m;
- DBA to decouple dispersion and beam size issues
- Beam size on the dump window ~15 mm²
- Length = 20.7 m



- Two collimators to protect downstream triplet
- intercepts 3.9 kW/train and 18.8 kW/train

(Details in S.Seletskiy talk)

Return line Vacuum system (Xiao Qiong, IHEP/China)



• 86 curved strings followed by 8 straight strings

• 1 bellow/1 quadrupole magnet,

• If one string uses vacuum breaker, the next string uses gate valve.

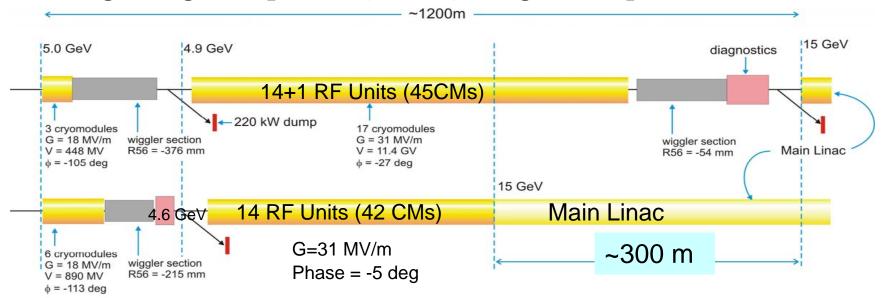
• passivated SS, ID=35mm, in magnet ID=16mm

Lattice design and Beam physics simulations

1. Effect of RF kick and wakefield effect from cavity couplers

- Simulations of the coupler induced RF kick and wakefields (FNAL, DESY, SLAC) – (S. Yakovlev talk)
 - in ILC baseline cavity with different configurations of HOM couplers
 - In coaxial coupling section (new proposal) ongoing (S.Yakovlev)
- Effects of couplers in ML (FNAL, DESY) (D.Kruecker and A.Latina talks).
- Effect of couplers in 2-stage baseline Bunch compressor and 1-stage BC (FNAL) – (A.Latina talk)

Summary: RFKick + Wakes


$_{ m ML}$	old	new	alternate
no correction	50.168	7111.7	611.17
1-to-1	0.66957	11.429	0.95280
1-to-1 disp free	0.61000	3.3888	0.27690
BC1	old	new	
no correction	5.3064	96.867	
1-to-1	3.1481	103.64	
1-to-1 disp free	0.83140	15.444	
BC2	old	new	alternate
no correction	9.0382	7147.8	547.6
1-to-1	3.2798	26.009	5.336
1-to-1 disp free	3.2798	26.012	3.424

- Emittance growh in nanometers
- Unacceptable emittance dilution in BC
- R&D on symmetrical coupler to reduce RF kick

RTML in Minimum Machine Configuration

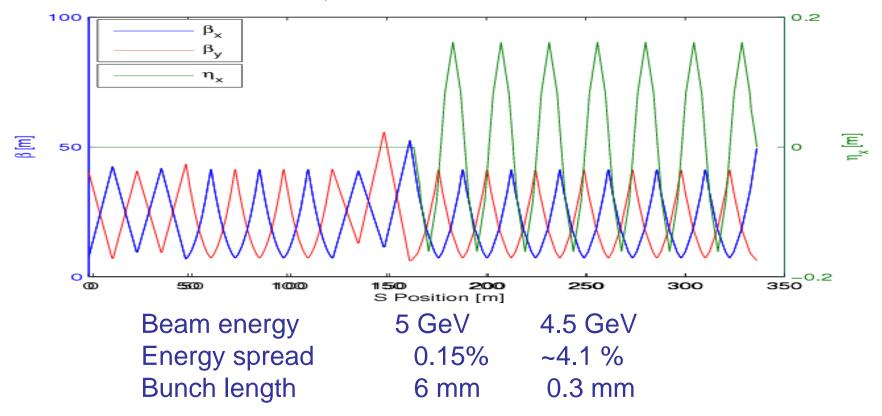
The RTML two-stage Bunch Compressor (top) and a possible short single-stage compressor (bottom). Lengths compared for 15 GeV.

Single-stage BC is possible, if not support flexibility of parameter set Changes: 9(6)mm $\rightarrow 0.3(0.2)$ mm to 6mm $\rightarrow 0.3$ mm (20 compression)

- ☐ Reduction in beamline and associated tunnel length by an equivalent of ~300 m (including some in SCRF linac)
- ☐ Removal of the second 220 kW dump and dump line components
- ☐ Possible shortening of the diagnostics sections (lower energy)

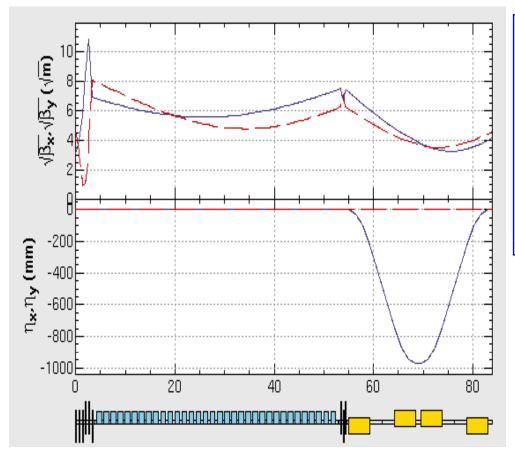
Higher energy spread → study emittance dilution in RTML and ML

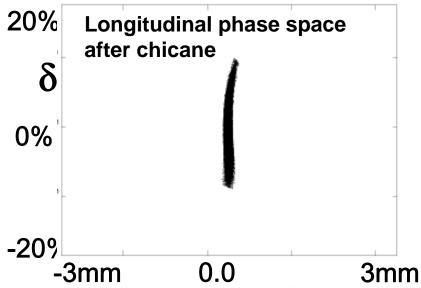
Single stage bunch for Single stage bunch compressor


(Minimum Machine configurations)

- Studies of 1-stage BC (PT-AW-TR, 2005) configuration (A.Latina talk):
- Alternative short 1-stage (lattice design and performance studies. (E-S. Kim talk)
- Re-design of matching section to launch beam to ML
- Future Studies
 - Re-evaluation of diagnostic section design
 - Performance studies and optimization for both singlestage BC
 - Tolerances and emittance dilution studies

Single-stage bunch compressor


Start with lattice of A. Wolski, T.Raubenheimer and P. Tenenbaum -2005


- Large energy spread → bigger emittance dilution in ML
- Possibly more sensitive to alignment errors?
- Long system ~300m → optimization to reduce length (?)

Performances of the Short 1-stage BC

In	Initial	
Beam energy, GeV	5	4.57
bunch length, mm	6	0.3
energy spread, %	0.15	3.46
X-Emittance, um	8.00	8.28
Y-Emittance, um	0.02	0.02

(Details in Eun-San Kim talk)

Future work (resources?)

- Baseline design (CLIC/ILC collaboration):
 - Static emittance preservation studies
 - Implement alignment model and stray-field models
 - Design of FB system. Start Dynamic simulation in RTML
 - Study of magnetic stray-field
 - Study amplitude-phase stability at FLASH (9-mA studies) -?
- Support MM studies:
 - Complete design, optimization and single-stage BC emittance preservation studies in both lattices:
 - PT/AW/TR 2005 design
 - Short (alternative) design with chicane
 - Re-evaluation of diagnostics section and matching sections
 - Emittance dilution in ML with the beam parameters, provided by 1-stage BC
 - RE-design EL_BC1 (if resources will be available)
- Code development
 - CHEF; complete cross-checking, implementation of RF kick/wake
 - Lucretia and Placet same; AML lattice file.
- Technical system
 - Re-evaluation of RTML vacuum system

Conclusion

- Design of all three extraction lines are completed
- Re-evaluation of vacuum system for return line (P<10 nTorr) is done
- First results from magnetic stray field measurement
- Study effect of coupler induced RF kick and wake on emittance dilution in RTML and ML completed
- New results from studies of two lattices for 1-stage BC
- Code development new results
- Future Plans are presented