Progress activities in short bunch compressors

Nov. 17-19 2008 ILC workshop @ Chicago

> KNU Eun-San Kim

Introduction

- Short 2-stage bunch compressor
 - ✓ A little modifications, such as reduction in length of bends, were performed to improve the performance.
 - ✓ Lattice tunings with dispersion and orbit corrections show that the system is error tolerant.
- □ Short 1-stage bunch compressor
 - ✓ Several parameters, such as rf voltage, were modified.

Short 2-stage bunch compressor

System length: 672 m

Number of bends: 8

Length of a bend: 3.4 m

Bending angle: 8.1 / 2.6 deg

RF voltage: 29 / 27 MV/m

RF phase: -114/-45 deg (from crest)

R₅₆ : -474.2 mm / -50.8 mm

Short 2-stage bunch compressor (Performances)

	Initial	Final
Bunch length	6 mm	0.15 mm
X-Emittance	8.0 μm	8.6 μ m
Y-Emittance	0.20 μm	0.02 μm
Beam energy	5 GeV	13.2 GeV
Energy spread	0.15 %	2.4 %
Bunch charge	3.2 nC	3.2 nC

Short 2-stage bunch compressor (longitudinal phase space)

Short 2-stage bunch compressor

■ We performed both dispersion correction and orbit correction at the same time such that they have a minimum value.

□ Correction of vertical dispersion that is generated by skew components was performed by using of 4 skew-quadrupoles.

Short 2-stage bunch compressor (Considered machine errors)

Error	Magnitude
H-misalignment in Q	300 μm rms
V-misalignment in Q	300 μm rms
Rotation in Q	300 μrad rms
V-misalignment in B	300 μm rms
H-misalignment in B	300 μm rms
Rotation in B	300 μrad rms

Short 2-stage bunch compressor

(lattice distortion and corrections)

Growths of emittance: factors of 1.48 / 254 in H / V

Growths of emittance: factors of 1/1.04 in H/V

Short 2-stage bunch compressor (effects of ISR and CSR on emittances)

Effect	Growth of X-emittance
CSR	0.20 μm
ISR	0.43 μm
CSR+ISR	0.63 μm

ISR is a main source to emittance growth.

Short 2-stage bunch compressor (fluctuation in bunch length)

100 successive bunches due to rf voltage jitter (left) and rf phase angle jitter (right).

Short 1-stage bunch compressor

System length: 83.9 m

Number of Quadrupoles: 9

Number of bends: 4

Bending angle: 2.5 deg

Length of a bend: 4.25 m

RF voltage: 31.5 MV/m

RF phase: -114 deg (from crest)

R₅₆: -0.172 m

Short 1-stage bunch compressor (Performances)

	Initial	Final
bunch length	6 mm	0.3 mm
energy spread	0.15 %	3.46 %
X-Emittance	8.0 μm	8.28 μm
Y-Emittance	0.02 μm	0.02 μm
Beam energy	5 GeV	4.57 GeV

Short 1-stage bunch compressor (longitudinal phase space after chicane)

Short 1-stage bunch compressor (effects of ISR and CSR on emittances)

Effect	Growth of X-emittance
CSR	0.27 μm
ISR	0.01 μm
CSR+ISR	0.28 μm

CSR is a main source to emittance growth.

Summary

- ☐ Studies on machine errors and lattice tunings in short 2-stage BC were presented.
 - ✓ The results show that the system is error tolerant.

□ As short 1-stage BC has smaller number of magnets, it is expected that effects of machine errors will be smaller and the system be also error tolerant.