

Comparison of Central Trackers for the ILC

Universita' del Salento Matteo Rucco 4th Concept Collaboration

LCWS2008

11/18/2008

Performance Studies of 10000 events of 10muons single tracks

- P: [0,200] GeV
- θ : [0,180°] (flat $\cos \theta$)
- φ: [0,360°]
- B: 3.5/5 Tesla

IlcRoot – The 4thConcept Framework

Simulation/recostruction

- Hits, Dig, SDig.
- With the Virtual MonteCarlo Interface is possible to use different MonteCarlo (G4, G3, Fluka ...)
- High flexibility (6 tracking detectors: 2 x VXD, TPC, DCH, SiD, SiPT)

See Ignatov's talk.

DCH Layout

SiD with a scale's factor

- Full Digitization/Clusterization for VXD
- Paramatrized Digitization for DCH
- Prof. F. Grancagnolo and his CluCou group is working on the digitization

VXD + CluCouDrift Chamber

- ■24 SuperLayer with 10 rings 240 rings
- ●20 um W sense wires, in total 66000
- •80 um Al field wires, in total 156000
- Hexagonal cells
- ■Inner Radius: 19cm Router: 144cm
- L=150 at R=150, L=424 at R=19
- Spherical EndCaps (R=2.24)
- ■Wires with Stereo Angles: ±55÷ ±216 mrad
- **®**Drop, δ=4cm
- Filled with a mixture of Gas: 90% He + 10%iCH10
- ●3.5T Magnetic Field

SiD - Strip Detector - Layout

Version SiD01-Polyhedra + SiD01 0.07 **Guard ring: mm Barrel Layers: Total Tiles Barrel** 7312

Wafer layout

Strip pitch 50 µm Strip thickness (Si wafer) 300 µm Strip length 93.31 mm

Tile width 93.531 mm

Carbonfiber in 0.228 mm 3.175 mm Rohacell tickness Carbonfiber out 0.228 mm Si support 300 µm x 6.667 mm x 63.8 mm 0.1 mm

Kapton Layer

Support layout

500 μm

Carbon Fiber Rohacell 8.075 mm

> Carbon Fiber 500 µm

Barrel Layer layout

Radial position (Barrel) cm18.5-24.5; 44.1-50.1; 69.6-75.6; 95.2-101.2; 120.8-126.5

Z-length cm 53.4; 121.6; 189.6; 257.8; 326

18.5 48.6 62.9148 18.5 74.1 96.915515

18.5 99.7 131.016285

125.3 165.117005

2.78 16.67 20.59408

16.67 54.04408

Barrel has single sensor strips

Complete Digitization and Clusterization

Hits->SDigit->Digit->RecPoints

SiPT – Pixel Detector- Layout

Same architecture of the strip detector.

Two very important difference are:

1) The size of pixel 50x50um! Increasing the number of tracking elements:

 $O(10^{10}) \text{ Vs } O(10^7)$

2) Difference in the thickness of the Silicon layers: 50um Vs 300um of the previous.

Wafer - Barrel Region

5T magnetic Field

Material Budget – DCH + VXD (Θ=90°)

Material Budget – Barrel Region SiD & SiPT (\textbf{\theta} = 90°)

Strip Detector:

Very High Budget Material

Pixel Detector: less than SiD

Material Budget (Summary)

- Beam Pipe: 0.18% X/X_o
- VXD:
 - Detector & support: 0.8% X/X_o

- Drift Chamber
- Gas [He-C4H10/90-10]: 0.15%
- Wires: 0.4%
- Vessel:
 - Inner wall: 0.1% X/XoOuter wall: 2% X/Xo
 - Endcaps (wires, pads, electronics & services included): 8% X/Xo

SiD StripTracker

- Barrel :6.21% (Si= 3.98% + Support=2.23%)
- Endcap Inner Disks: 2.93 % X/Xo
- Endcap Outer Disks: 4.39-5.39% (with supports) X/Xo

SiPT PixelTracker

- Barrel :4.8% (Si= 2.6% + Support=2.2%)
- Endcap Inner Disks: 2.ss % X/Xo
- Endcap Outer Disks: 3.78-4.28% (with supports) X/Xo

Performance of the Simulated Detectors

Efficiency Studies Reconstructable Tracks

- DCA(true) < 3.5 cm
 AND
- (At least 10 hits in DCH OR
- At least 4 hits in SiT + VXD)

$$\varepsilon_{\text{geom}} = \frac{Good\ Tracks}{Total\ Tracks\ Generated}$$

Efficiency Studies – DCH Low Pt

Efficiency Studies SiD & SiPT Low Pt

Tracking Performance Pt Vs P

Reduced Multiple Scatter Effect!!!

Tracking Performance Theta Vs P

Tracking Performance Phi Vs P

Tracking Performance D_o vs P

Tracking Performance Z vs P

Tracking Performance Pt Vs Theta

Tracking Performance Theta Vs Theta

Tracking Performance Phi Vs theta

Tracking Performance Z Vs Theta

Studies of Resolution DCH Pt Vs Theta

Limited resolution and efficiency at small angle!

Studies of Resolution Phi Vs P DCH

Studies of Resolution Phi Vs P SiD & SiPT

Studies of Resolution P VsPt DCH

Lower ms effect!

Studies of ResolutionP VsPt SiD & SiPT

High ms effect

Reduced ms

Tracking Performance

effect

Drift Chamber

$$\sigma(P_t^{-1}) = 7.9/P \oplus 0.39 \times 10^{-4} GeV^{-1}c$$

$$\sigma(\vartheta) = 0.62 / P^{0.79} \oplus 0.027 \ mrad$$

$$\sigma(\varphi) = 1.30/P \oplus 0.031 \, \text{mrad}$$

$$\sigma(D_0) = 12.8 / P^{0.46} \oplus 2.1 \,\mu m$$

$$\sigma(Z_0) = 15.7 / P^{0.58} \oplus 2.9 \ \mu m$$

3.5T - 5T

$$\sigma(P_t^{-1}) = 20.4/P \oplus 0.29 \times 10^{-4} GeV^{-1}c$$

$$\sigma(\vartheta) = 0.64/P^{0.78} \oplus 0.002 \ mrad$$

$$\sigma(\varphi) = 1.41/P \oplus 0.027 \text{ mrad}$$

$$\sigma(D_0) = 12.7 / P^{0.61} \oplus 2.1 \,\mu m$$

$$\sigma(Z_o) = 13.5/P^{0.57} \oplus 2.1 \,\mu m$$

Many Sensors

High ms effect

Si Strips

$$\sigma(P_t^{-1}) = 24.1/P \oplus 0.31 \times 10^{-4} GeV^{-1}c$$

$$\sigma(\vartheta) = 0.6 / P^{0.83} \oplus 0.07 \ mrad$$

$$\sigma(\varphi) = 1.4/P \oplus 0.029 \text{ mrad}$$

$$\sigma(D_0) = 12.2/P^{0.55} \oplus 2.1 \,\mu m$$

$$\sigma(Z_0) = 16.8/P^{0.84} \oplus 4.4 \,\mu m$$

Single Sensor

Summary

- We performed compared studies using ILCRoot, simulating events with single track.
- •The performance are inline with aspected value, the DCH works better with track with low Pt (lower ms).
- •A new development will introduce silicon in the EndCaps region.
- •Recostruction efficiency is very similar for each detectors.
- *SiPT has exceptional resolution, clearly 50x50um is overkilling.
- •SiD overall performance is very good but limited informations in the barrel region. 29

Thanks to...

...YOU, for your patience at my first talk.
Corrado Gatto and his group (INFN - Italy)
Prof. Franco Grancagnolo and his group (INFN - Italy)
Fedor V. Ignatov (BINP - Russia)
Alexander Charpy (LPNHEP-France)
Fermi National Laboratory

and a special thanks to the 10muons!

Backup Slide: The problem along Z coordinates in VXD

