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Reminder on Cavity Couplers

* There are 3 couplers

- 1 RF or power coupler

- 2 HOM couplers

* Couplers destroy the rotational symmetry and introduce
transverse field components

- RF fields
- Wakefields
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Reminder on Cavity Couplers
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* A design change had been considered* to reduce the
potentially strong transverse coupler wakefields

- Rotate HOM couplers relative to RF coupler by 90°
to minimise the sum of transverse wakefields

 Alternatively just rotate one of the coupler by 180°

*1. Zagorodnov and M. Dohlus, LCWS/ILC, Hamburg 2007



Merlin

* A C++ class library for performing

charged particle accelerator simulations
http://www.desy.de/~merlin

* The physics considered for tracking can be
extended by adding processes

— Merlin knows about cavity wakefields

— extended recently to include other types
wakefield processes e.g. collimator or coupler
wakes and RF kicks

 The accelerator consists of a list of accelerator
components

— with geometry, magnetic fields and wakefields
+ coupler wakefields + RF kicks



WakeFielProcess and WakePotential in MERLIN

tracking

T

WakeFieldProcess « |

CouplerWakeFieldProces

checks for its own
wakefield type

accelerator model

AcceleratorComponent

GetWakePotentials( )

WakePotentials
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TeslaWakePotentials
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CouplerWakePotentials

 Allows for arbitrary combinations
e.g. cavity wakefield + coupler wakefield + RF kick

SpoilerWakeFieldPotentials

A

TaperedCollimatorPotentials

* Results of EM field calculations can be plugged in




History of Merlin Simulations

Different Merlin implementations according to the changing
numerical input

* My talk at SLAC, Wakefest 07 based on

- I. Zagorodnov and M. Dohlus, LCWS/ILC Hamburg
2007, paper (sign errors in RF kicks!)

» Reduced wakefield and (wrong!) RF kicks in new
design

* Our paper at Genoa, EPAC0O8, TUPP047 (corrected) =
EUROTeV-Report-2008-003

* The RF kick is larger in the new design

* This meeting: steady state solution for coupler wakefields
about 1/10! 6



Coupler RF kick — MERLIN Implementation

» RF kick is givenasa "~ """ 107 x.y lom|
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* The kick is given by

for example _ -
MAFIA calculation by M.Dohlus

’ AE 1 —p— z 1,
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A z=—A ct, longitudinal position for a particle at ¢
¢@=5.3"° RF phase, k=2m f/c, L=1.036 m
AE=315 GeV/m-L, E=15---250 GeV



Coupler RF kick - Approximation for New Design

 There is no MAFIA field calculation for the modified
design. Approximated in MERLIN by vy — -vy

(downstream coupler)

* In this case the angle between HOM coupler and x-axis is
only 42.5° instead of 47.5°.
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HOM couplers are rotated relative to power coupler




Coupler RF kick — Differences between Codes

* There are different humerical calculations / different codes for
electromagnetic field calculations

- Omega3P, MAFIA, HFSS
 The numerical result is sensitive

— cancelation between upstream and downstream coupler

- the transverse fields are a small effect, about 5 orders of
magnitude smaller than the longitudinal fields

- depends on different assumptions e.g.
e input coupler pen depth ~ Qext
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DESY M. Dohlus Sep 2003 old values!



Coupler RF kick — Differences between Codes

|Vy| on axis for 31.5 GeV “ Code and Qext

old 284 V
new 2350 V

|| MAFIA 2.5 10°

used for MERLIN simulations

TDR(=o0ld) 785 V
TDRM* 2621V

Omega3P 3.4 - 10°

Zenghai Li's talk, Wakefest 07

TDR 130 V

Omega3P 3.5-10°

Bane et al., EPAC08, TUPP019
\

*TDRM = downstream coupler rotated by 180° l

For comparison a 100 u rad
cavity tilt
1

but RF kick 1s not random

Table 2: RF kick on-axis due to coupler asymmetry in [kV].
Re(V') is the in-phase, Im (V') the out-of-phase kick.

Region V. Vy

Upstream —1.8240.22¢ |—1.29—0.112
Downstream —0.79 — 1.62; J+1.154 0.284
Total —2.61 —1.40¢ |—-0.134+0.172

cancelation between upstream and downstream coupler 11




Simulation Results - RF Kicks

D. Krlcker et al., EPAC08, TUPP047, EUROTeV-Report-2008-003

Irqjectory along the main linac
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Simulation Results - RF Kicks
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* Only a small emittance increase even at 800V



Simulation Results - RF Kicks

Does the RF kick increased the sensitivity to
Voltage instabilities?

* Random Klystron errors (24 cavities) applied to the
steered system

ye€,(y€) [nm] 0% 0.1%* 1%
old design 20.3 (20.3) 20.3 (20.3) 20.4 (20.3)
new design 25.1 (21.8) 25.1 (21.8) 28.3 (22.1)
*RDR value

* New design is slightly more sensitive to voltage errors



Coupler Wakefields — MERLIN Implementation

* Calculation by I.Z. gives transverse kick not the wake potential
* We assume a purely capacitive wakefield (worst case)

- A particle in a bunch with distribution \(s) experlences a

transverse potential:
W (s)=2k f A(3
— In MERLIN numerically calculated Zo
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significantly smaller on axis
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Simulation Results -Wake Kicks (old Results)
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Snashots of the bunch profile (y-ct-plane, at
quads 102,104...114). The bunch tail oscillates
strongly driven by coupler wakefield.
DK et al., EPACO8 - TUPP047
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Coupler Wakefields — Steady state solution

" mm (ECHOj

3 mm (ECLO)

PBCI:408 CPUs

o 403*mm@BCI) 7 days
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M. Dohlus, I. Zagorodnov, DESY; E. Gjonaj, T. Weiland, TEMF, TU-Darmstadt;
EPAC08, MOPP013 ,
Self Induced Coupler Kick (Wake)

It can be seen that the kick factor at both coordinate
plans for 6 = 0.3 mm is about 2 V/nC, that 1s an order of
magnitude lower than a preliminary estimation of Ref.
[5]. This is a consequence of a shadowing effect of the
cavity and of a linear decrease of the steady-state wake
with the decrease of the bunch length [6, 9].

krescaled<x’y) — O°11.kold<x’ y)’
®

to approximate the steady state solution 17



Simulation Results — Wake Kicks, Steady State Results
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Plot by Fabian Gross z/m

* Steady state result gives negligible emittance increase
* A large RF kick is more problematic than the coupler wakefield kick
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Conclusions

* The numerical input for the simulation:
Chasing a moving target — consistent now(?)

» Effect of coupler wakefields on the emittance is
negligible for the steady state solution

- Is it preserved throughout the linac?

* A modification of the relative coupler position to reduce the
wakefields will increases the RF kick Aye,=1.8nm

- worse than the steady state wakefields

* Smallness of the RF kick is a result of a cancellation between
up- and downstream couplers. The precise numerical value
sensitively depends on assumptions but even for

- Kick <800V : Aye®=0.8nm
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