Developments on MicroMegas for DHCAL

Jan Blaha

Laboratoire d'Annecy-le-Vieux de Physique des Particules

LCWS08 Workshop

Chicago, 16 - 20 November 2008

Outline

- μ Megas
- Readout electronics
- X-ray response
- Test beam results
- Large scale prototype
- Conclusion

MicroMEsh GAseous Structure

Description

- Gas (Argon + Isobutane)
- Hight voltage < 500 V
- High detection rates
- Robust, relatively low cost
- Thickness 3.2 mm
- Delicate functioning (sparks)

Readout

- Analog for characterization - GASSIPLEX + CENTAURE DAQ
- Digital
- HARDROC or DIRAC + DIF + CrossDAQ or EUDET DAQ2

Bulk technology, 32×8 pads

HARDROC 1 (2) (LAL)

- Analog and digital readout
- 1 chip (16 mm², $19 \mathrm{~mm}^{2}$)- 64 channels
- 2 (3) thresholds in 10 bit precision
- Digital memory for 128 events
- Gain-10 fC to $1 \mathrm{pC}(5 \mathrm{pC}$ to 10 pC$)$
- Low consumption -< $10 \mu \mathrm{~W} /$ channel

DIRAC (IPNL)

- Digital readout
- 1 chip ($7 \mathrm{~mm}^{2}$) - 64 channels
- 3 thresholds in 8 bit precision
- Digital memory for 8 events
- 2 gains - 3 f C to $200 f C$ (100 fC to 10 pC)
- Low consumption - < $10 \mu \mathrm{~W} /$ channel

4 HARDROC for 8×32 pads

lapp

Digital InterFace

DIF board (LAPP):

- Independent board to have more flexibility
- It provides the communication with PCs and HARDROCs (DIRACs) USB through the intermediate board (InterDIF)

- It allows ASICs configuration and performs analog and digital readout
- Also compatible with SPIROC and SKYROC

InterDIF
J. Blaha, LCWS08

Set-up:

- ${ }^{55} \mathrm{Fe}$ source (5.9 keV)
- Trigger on mesh
- Analog readout

Energy resolution FWHM = 25.5\%

Gain ≈ 7600

Response vs pressure

Test beam (August 08)

Main objectives

- Prototypes diversity
- Pad homogeneity
- Efficiency and multiplicity
- Crosstalk study
- Behavior in hadronic showers

Collected data

- 50 and 200 GeV pions
- 200 GeV muons
- 200 GeV pions with and without iron absorber in front of the system
Set-up at H2 line SPS-CERN

Iapp.

Test beam (August 08)

Main objectives

- Prototypes diversity
- Pad homogeneity
- Efficiency and multiplicity
- Crosstalk study
- Behavior in hadronic showers

Collected data

- 50 and 200 GeV pions
- 200 GeV muons
- 200 GeV pions with and without iron absorber in front of the system

Set-up at H2 line SPS-CERN
1μ Megas 12×32 pads

3 steel absorber plates (1.9 cm)
3μ Megas 6×16 pads

Trigger -3 scintilatoros

lapp.

 Pedestal and noise performancePedestal vs pad

- Pedestal was set correctly for all the pads
- Pedestal and noise were stable over all the test beam period

Mean electronic noise

Electronics noise vs pad

$190 p$

MIP signal

Only events with single hit in 4 chambers are considered

MIP signal in single channel

Landau peak vs pad

Landau variation (~12\%)

$190 p$

Efficiency

Efficiency for 4 chambers (for all pads)

	Efficiency
Chamber 0	$97,05 \pm 0,07 \%$
Chamber 1	$98,54 \pm 0,05 \%$
Chamber 2	$92,99 \pm 0,10 \%$
Chamber 3	$96,17 \pm 0,07 \%$

Count the Number of hit(s) in a 3×3 array around the expected hit

Efficiency vs threshold

Pad multiplicity for two chambers ($\sim 80,000$ events each) < 1.1

app

MicroMegas with digital readout

The first operational bulk μ Megas with embedded readout electronics (TB in August 08):

Beam Profile when moving the $\mathrm{X}-\mathrm{Y}$ table

Test beam (November 08)

T9 line (PS-CERN)

- 7 GeV Pions
- Old and new prototypes
- Data currently under study

$\mathbf{m}^{2} \boldsymbol{\mu}$ Megas prototype

m^{2} prototype:

- ~10 000 channels
- Prototype to be ready for test beam 2009

Next step: m^{3} with ~ 400000 readout channels

DHCAL - 40 planes (μ Megas)

100 GeV Pions

1002

6 Bulks (6 MESH + 6 ASU

+ 144 HARDROC2)

Ongoing simulation study for design optimization

IPP

Optimization:

- Material and dimension
- Readout cell size:
- $0.5 \times 0.5 \mathrm{~cm}^{2}$
- $1 \times 1 \mathrm{~cm}^{2}$
- $2 \times 2 \mathrm{~cm}^{2}$
- $4 \times 4 \mathrm{~cm}^{2}$

$m^{3} \mu$ Megas simulation

Energy resolution for 10 GeV pions (no threshold)

Longitudinal shower profile

Energy resolution vs pion energy

J. Blaha, LCWS08

- Several μ Megas prototypes have been successfully built and extensively tested
- The first μ Megas test beam results have showed very good performance complying with DHCAL needs
- Development of large scale prototypes is well underway and is going to be ready for a test beam 2009

