Preliminary results for electron cloud induced coupled bunch instability in DAFNE

T. Demma INFN-LNF

Thanks to K. Ohmi (KEK)

LCWS08 and ILC08
November 16-20, 2008
University of Illinois at Chicago

Plan of talk

- Electron cloud at DAFNE
- Electron cloud multi-bunch instability
 - Wake field
 - Tracking simulations
- Comparison with experiments
- Conclusions and outlook

Electron cloud at DAFNE

- e⁺ current limited to 1.2 A by strong horizontal instability
- Large positive tune shift with current in e⁺ ring, not seen in e⁻ ring
- Instability depends on bunch current
- Instability strongly increases along the train
- Anomalous vacuum pressure rise has been oserved in e⁺ ring
- Solenoids installed in free field regions strongly reduce pressure but have no effect on the instability (see A. Drago talk)
- Instability sensitive to orbit in wiggler and bending magnets
- Main change for the 2003 was wiggler field modification

Typical measurments

The first than the transfer of the control of the c

Grow-damp measurements

Pattern dependence

- •Growth rates depends on bunch current
- •Most unstable mode is always a slow frequency mode (-1 mode)

Linear theory of e-cloud induced multibunch instability

[S.S. Win et al., Phys. Rev. ST-AB 8, 094401 (2005)]

Under linearity and superposition assumption, the momentum kick experienced by bunch i when bunch j is displached can be written as:

$$\Delta y'_{p,i} = \frac{N_p r_e}{\gamma} \sum_{j>i}^{i+N_w} W_1(z_i - z_j) y_{p,j}$$

Coupled bunch instability is characterized by the dispersion relation:

$$(\Omega_m - \omega_\beta) L/c = \frac{N_p r_e c}{2\gamma \omega_\beta} \sum_{\ell=1}^{N_w} W_1(-\ell L_{\rm sp}) \exp \left(2\pi i \ell \frac{m + \nu_\beta}{M}\right)$$

 $N_{p} = p.p.b.$ $\gamma = E / m_{e}c^{2}$ $V_{\beta} = \omega_{\beta} / \omega_{0}$

M = harm.numb.

Bunches oscillate with a mode characterized by:

$$y_m(z_i) = a_m \exp[-i\Omega_m t + 2\pi i m j/M]$$

The momentum kick can calculated numerically using the PEI-M code.

Simulation assumptions

- Electron cloud uniformly distributed along the ring
- Electrons in the arcs are assumed to move in a uniform vertical magnetic field
- Circular chambers

Input parameters for DAFNE simulations

Bunch population	N _b	2.1; 4.2 x10 ¹⁰
Number of bunches	n _b	120; 60
Missing bunches	N_{gap}	0
Bunch spacing	L _{sep} [m]	0.8;1.6
Bunch length	σ_z [mm]	18
Bunch horizontal size	σ_{x} [mm]	1.4
Bunch vertical size	σ_{y} [mm]	0.05
Chamber Radius	R [mm]	40
Hor./vert. beta function	$\beta_x[m]/\beta_y[m]$	4.1/1.1
Hor./vert. betatron tune	v_x/v_y	5.1/5.17
Primary electron rate	dλ/ds	0.0088
Photon Reflectivity	R	100% (uniform)
Max. Secondary Emission Yeld	Δ_{max}	1.9
Energy at Max. SEY	E _m [eV]	250
Vert. magnetic field	B _z [T]	1.7

Instability caused by electrons in the DAFNE

- bunch 400 is hor. displaced $(x_0=5mm)$
- Electron distribution
- Wake force
- •Growth rate ~ 100 turn

Wake linearity

Linearity is satisfied up to no more than the 410th bunch

Tracking simulation

K.Ohmi, PRE55,7550 (1997)K.Ohmi, PAC97, pp1667.

- •Solve both equations of beam and electrons simultaneously, giving the transverse amplitude of each bunch as a function of time.
- Fourier transformation of the amplitudes gives a spectrum of the unstable mode, identified by peaks of the betatron sidebands.

Bunch train evolution

1.2 A in 60 equispaced bunches

Mode spectrum and growth rate

e-cloud density evolution

Bunch train evolution

1.2 A in 120 equispaced bunches

Mode spectrum and growth rate -1 mode (120-5-1=154)

120 equispaced bunches

Beam current 1.2 A

Growth time ~ 100 turn

Simulations vs measurments

Measu	ırment	Simu	lation
I[mA]/nb	τ/T _o	I[mA]/nb	τ/T _o
1000/105	73	1200/120	100
750/105	56	900/120	95
500/105	100	600/120	130

Conclusions and oulook

- Coupled-bunch instability has been simulated using PEI-M for the DAFNE parameters
- Preliminary results are in qualitative agreement with grow-dump measurments
- Explore a wider range of beam and chamber parameters
- Compare the results with other codes (Ecloud, POSINST)
- Modify the code to include ellyptical boundaries